大数据毕业设计选题推荐-营业厅营业效能监控平台-Hadoop-Spark-Hive

本文主要是介绍大数据毕业设计选题推荐-营业厅营业效能监控平台-Hadoop-Spark-Hive,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者主页:IT毕设梦工厂✨
个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。
☑文末获取源码☑
精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

文章目录

  • 一、前言
  • 二、开发环境
  • 三、系统界面展示
  • 四、部分代码设计
  • 五、论文参考
  • 六、系统视频
  • 结语

一、前言

随着通信行业的快速发展和市场竞争的日益激烈,营业厅作为通信公司的重要服务窗口,其服务质量和运营效率直接影响到公司的形象和业绩。为了提高营业厅的运营效能和服务质量,建立一个营业厅营业效能监控平台,对营业厅的各项运营数据进行实时监测和分析,变得至关重要。

当前,一些通信公司门店已经尝试使用一些数据分析和监控工具来监测其营业厅的运营数据。然而,这些工具往往存在一些问题,如:
数据不齐全:现有工具往往只能提供部分营业厅的数据监测和分析,无法覆盖营业厅的所有运营数据。
数据不及时:由于数据采集和处理的制约,现有工具往往无法实时更新数据,使得数据分析的结果无法反映营业厅运营情况。
分析不深入:现有的工具往往只能提供基础的数据统计和分析,而无法进行深入的数据挖掘和趋势预测,从而无法为决策提供有力的支持。
因此,建立一个实时、深入的营业厅营业效能监控平台,仍然具有必要性和现实意义。

本课题的研究目的是建立一个营业厅营业效能监控平台,通过实时采集、处理和分析营业厅的各项运营数据,提供准确、及时的数据支持,以帮助通信公司更好地了解营业厅的运营状况、提高服务质量、优化资源配置。具体来说,本课题将实现以下目标:
实现数据的采集和实时更新,反映所有营业厅的运营状况;
实现数据的处理和分析,提供各种指标的统计和可视化;
实现数据的深入挖掘和趋势预测,为决策提供有力的支持;
提供一个友好的用户界面,方便用户进行数据查询和操作。

本课题的研究意义在于为通信公司提供一种便捷、准确、实时的营业厅营业效能监控平台,从而帮助通信公司更好地了解营业厅的运营状况和服务质量,优化资源配置和提高服务水平。具体来说,本课题的意义包括:
提高服务质量:通过实时监控营业厅的运营数据和服务质量,通信公司可以及时发现并解决存在的问题,提高客户满意度和服务质量。
优化资源配置:通过对营业厅的运营数据进行分析和处理,通信公司可以了解各营业厅的客流量、业务类型、服务需求等情况,从而优化资源配置和服务流程,提高公司的运营效率。
提高决策效率:通过实时数据监测和分析,通信公司可以更加准确地了解市场趋势和消费者需求,从而更加准确地制定营销策略和投资计划,提高决策效率和准确性。
增强竞争力:通过建立便捷的营业厅营业效能监控平台,通信公司可以更好地了解市场趋势和消费者需求,优化资源配置和提高服务水平,从而增强竞争力。同时,这种数据驱动的决策方式也可以提高公司的透明度和诚信度,增强公司的社会责任感和品牌形象。

二、开发环境

  • 大数据技术:Hadoop、Spark、Hive
  • 开发技术:Python、Django框架、Vue、Echarts、机器学习
  • 软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机

三、系统界面展示

  • 基于大数据的营业厅营业效能监控平台界面展示:
    基于大数据的营业厅营业效能监控平台
    基于大数据的营业厅营业效能监控平台-门店历史受理详情
    基于大数据的营业厅营业效能监控平台-耗时步骤分析
    基于大数据的营业厅营业效能监控平台-门店基本信息
    基于大数据的营业厅营业效能监控平台-门店台席健康度
    基于大数据的营业厅营业效能监控平台-营业员受理详情

四、部分代码设计

  • 大数据项目实战-代码参考:
# 根据区县找出所对应的省份和城市
def cun(address_str):res_dict = {'province': '', 'city': '', 'county': ''}lit = []for k,v in area_data.items():for city_county_dict in v:for x,y in city_county_dict.items():# print(x,y)for j in y:if address_str.find(j) != -1:lit.append({'id': address_str.find(j), 'value': j})elif address_str.find(j) == -1:if address_str.find('河北区') != -1:if address_str.find(j[0:2]) != -1:# print(j)lit.append({'id':address_str.find(j[0:2]),'value':j})elif address_str.find('河北区') == -1:if '河北区' in y:y.remove('河北区')if address_str.find(j[0:2]) != -1:# print(j)lit.append({'id':address_str.find(j[0:2]),'value':j})lit.sort(key=lambda x: x['id'])# print(lit)if lit:for k, v in area_data.items():for city_county_dict in v:for x, y in city_county_dict.items():for j in y:if lit[0]['value'].find(j) != -1:res_dict['province'] = kres_dict['city'] = xres_dict['county'] = jreturn res_dictreturn res_dictdef create_main(address_str):address_str = address_str.replace('汽车', '')if address_str.find('乌鲁木齐县') != -1 and address_str.find('乌鲁木齐') != -1:return ['新疆', '乌鲁木齐', '乌鲁木齐县']if address_str.find('乌鲁木齐') != -1:return ['新疆', '乌鲁木齐', '']if address_str.find('沙市区') != -1:return ['湖北', '荆州', '沙市区']if address_str.find('灌南县') != -1:return ['江苏', '连云港', '灌南县']if address_str.find('张家港') != -1:return ['江苏', '苏州', '张家港市']if address_str.find('邯郸县') != -1:return ['河北', '邯郸', '邯郸县']if address_str.find('朝阳区') != -1:return ['北京', '北京', '朝阳区']if address_str.find('南昌县') != -1:return ['江西', '南昌', '南昌县']if address_str.find('芜湖县') != -1:return ['安徽', '芜湖', '芜湖县']if address_str.find('让胡路区') != -1:return ['黑龙江', '大庆', '让胡路区']if address_str.find('瑞安市') != -1:return ['浙江', '温州', '瑞安市']if address_str.find('丰泽区') != -1:return ['福建', '泉州', '丰泽区']if address_str.find('平阳县') != -1:return ['浙江', '温州', '平阳县']if address_str.find('乐清市') != -1:return ['浙江', '温州', '乐清市']if address_str.find('余姚市') != -1:return ['浙江', '宁波', '余姚市']if address_str.find('慈溪市') != -1:return ['浙江', '宁波', '慈溪市']if address_str.find('宁海县') != -1:return ['浙江', '宁波', '宁海县']if address_str.find('镇海区') != -1:return ['浙江', '宁波', '镇海区']if address_str.find('黄岩区') != -1:return ['浙江', '台州', '黄岩区']if address_str.find('头陀镇') != -1:return ['浙江', '台州', '头陀镇']if address_str.find('椒江区') != -1:return ['浙江', '台州', '椒江区']if address_str.find('义乌市') != -1:return ['浙江', '金华', '义乌']if address_str.find('温岭市') != -1:return ['浙江', '台州', '温岭']if address_str.find('玉环') != -1:return ['浙江', '台州', '玉环县']if address_str.find('玉环') != -1:return ['浙江', '台州', '玉环县']if address_str.find('路桥') != -1:return ['浙江', '台州', '路桥区']if address_str.find('路南区') == -1 and address_str.find('唐山') == -1:if address_str.rfind('路') != -1:address_str = address_str.replace(address_str[address_str.rfind('路') - 2:], '')if address_str.rfind('岸') != -1:address_str = address_str.replace(address_str[address_str.rfind('岸') - 2:], '')if address_str.find('道里区') == -1:if address_str.rfind('道') != -1:address_str = address_str.replace(address_str[address_str.rfind('道') - 3:], '')a = pro_cty_cun(address_str)b = cty_cun(address_str)c = cun(address_str)# print(a)# print(b)# print(c)if a['province'] != '' and c['province'] != '' and a['city'] == '' and b['city'] == '' and a['province'] == c['province']:# print(1)return list(c.values())if a['province'] != '' and b['province'] != '' and a['province'] == b['province'] and a['city'] != '' and b['city'] != '' and a['city'] == b['city'] and b['county'] != a['county']:return list(b.values())if a['province'] != '':return list(a.values())if b['province'] != '':return list(b.values())if c['province'] != '':return list(c.values())else:return ['', '', '']print(create_main('临沂颐高上海街'))#调用函数total_value=[]
for value in df['位置'].tolist():total_value.append(create_main(value))split_data= pd.DataFrame(total_value,columns=['省','市','区H'])#拼接
df_new_data= pd.concat([df,split_data],axis=1)
df_new_data.loc[:,'位置2']=df_new_data['省']+df_new_data['市']+df_new_data['区H']
ad_split=cpca.transform(df_new_data['位置2'])[['省','市','区','adcode']]df_new_data=df_new_data[['省级', '城市' , '已有经销商名称','已有门店名称','数量',  '区H', '位置2']].copy()
df_gyh=pd.concat([df_new_data,ad_split],axis=1)df_gyh.columns=['省份', '城市','经销商名称', '门店名称','门店数量', '区H','位置', '省', '市', '区', 'adcode']
# df_gyh.to_excel('D:\门店数据清洗\门店明细统计(含地址)\门店明细统计(含地址)\门店明细统计(含地址)\清洗后数据\清洗后门店(高英华).xlsx')df_1=pd.read_excel(r'D:\门店数据清洗\门店明细统计(含地址)\门店明细统计(含地址)\门店明细统计(含地址)\清洗后数据\清洗后门店(高英华).xlsx',converters={'Unnamed: 0':str,'adcode':str})
df_sh=pd.read_excel(r'D:\门店数据清洗\省份.xls')df_1=df_1[['Unnamed: 0','经销商名称','门店名称','门店数量','区H', '位置', '省', '市', '区', 'adcode']].copy()
df_1_sh=pd.merge(df_1,df_sh,left_on='省',right_on='省份',how='left')df_1_sh.loc[:,'门店id']=df_1_sh['省编码']+'-c'+df_1_sh['adcode']+'-'+df_1_sh['Unnamed: 0']new_columns=df_1_sh.columns.tolist()
new_columns1=['门店id', '省','市','区H','经销商名称','门店名称','位置','门店数量', '省编码', 'adcode', '省份','区', 'Unnamed: 0'
#               ,'门店名称1']#调整各列的位置
df_1_sh=df_1_sh.reindex(columns=new_columns1).copy()
df_1_sh=df_1_sh[['门店id', '省', '市', '区','经销商名称', '门店名称', '位置', '门店数量', '省编码',  'adcode']]#确认门店id是否唯一
print(df_1_sh[df_1_sh['门店id'] .isnull()])
# df_1_sh.to_excel('D:\门店数据清洗\门店明细统计(含地址)\门店明细统计(含地址)\门店明细统计(含地址)\清洗后数据\清洗后加门店id(高英华).xlsx',index=False)

五、论文参考

  • 计算机毕业设计选题推荐-基于大数据的营业厅营业效能监控平台-论文参考:
    计算机毕业设计选题推荐-基于大数据的营业厅营业效能监控平台-论文参考

六、系统视频

基于大数据的营业厅营业效能监控平台-项目视频:

大数据毕业设计选题推荐-营业厅营业效能监控平台-Hadoop

结语

大数据毕业设计选题推荐-营业厅营业效能监控平台-Hadoop-Spark-Hive
大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:私信我

精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

这篇关于大数据毕业设计选题推荐-营业厅营业效能监控平台-Hadoop-Spark-Hive的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/368842

相关文章

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

hadoop开启回收站配置

开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。 开启回收站功能参数说明 (1)默认值fs.trash.interval = 0,0表示禁用回收站;其他值表示设置文件的存活时间。 (2)默认值fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为0,则该值设置和fs.trash.interval的参数值相等。