本文主要是介绍python resample转换日K数据 (二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
通过PythonAPI获取股票数据
聚宽
代码示例
获取平安银行的股票信息
from jqdatasdk import *
auth('','')#获取平安银行按1分钟为周期以“2015-01-30 14:00:00”为基础前4个时间单位的数据
df = get_price('000001.XSHE', end_date='2015-01-30 14:00:00',count=4, frequency='minute', fields=['open','close','high','low','volume','money'])
print(df)
可以看到官网有对每个API的介绍:
XSHG-上海证券交易所;XSHE-深圳证券交易所。
如何获取所有A股的行情数据
from jqdatasdk import *
import time#将所有股票列表转换成数组
stocks = list(get_all_securities(['stock']).index)for stock_code in stocks:print("正在获取股票行情数据,股票代码为:", stock_code)df = get_price(stock_code, end_date='2021-05-30 14:00:00',count=5, frequency='1d', fields=['open','close','high','low','volume','money'])print(df)time.sleep(3)
使用Resample函数转换 “”“日K”数据
一、什么是resample函数?
它是Python数据分析库Pandas的方法函数。
它主要用于转换时间序列的频次。可以做一些统计汇总的工作。
什么叫转换时间序列的频次呢?
比如说股票的日k和周k,
假设我只能获取到股票日K的数据,比如说11月1号到11月5号,那怎么样将它转换为以周为单位的K线呢?
首先我们要明确,周K的开盘、收盘、最高、最低是什么。每周的开盘价是当周第一天的开盘价,收盘价是当周最后一天的收盘价,它的最高价是这周最高的价格,最低价是本周所有最低价中最低的价格。所以你去看炒股平台,它的周k都是以周五的交易日为记录的时间点位置。开盘、收盘、最高、最低是按照我刚刚讲解的这个规则来计算的。至于月K、年K的选取规则也是一样的。月K的周期是一个月,年K的周期是一年。
这个计算准确性你也可以通过网上的数据进行验证。这个计算规则,包括开盘、收盘、最高、最低的计算,收拾resample函数可以做到的事情。此外Resample还有个功能,就是做统计汇总,比如说我想计算一支股票总的周成交量,就可以使用Resample.sum函数去把周一到周五的成交量加起来。
为了方便大家记忆 ,你也可以把resample理解为Excel表格中的透视表功能。你可以按照日期做各种筛选和汇总统计的。最重要的是他可以按照日期。
二、实战Resample函数
1.日K 转换为 周K
Resample是属于Pandas DataFrame下面的方法。
这里我们只对2个常用参数讲解,一个是rule,另一个是closed。
- rule表示的是你放一个什么样的周期性指标在里面,用m代表Month,Y代表Year,w代表Week,
- closed代表你取哪一个分界线,举例来说,比如说我把日k转换为周k,到底我是取周一为分界线还是周五为分界线呢?这就是通过closed来确定的。
from jqdatasdk import *
import pandas as pd#获取平安银行按1分钟为周期以“2015-01-30 14:00:00”为基础前4个时间单位的数据
df = get_price('000001.XSHE', end_date='2015-01-30 14:00:00',count=20, frequency='1d', fields=['open','close','high','low','volume','money'])
print(df)
可以看到获取到了4月28号到5月28号的所有数据。为了更方便理解 我们再添加一列数据,就是当前日期是星期几的列
from jqdatasdk import *
import pandas as pd#获取平安银行按1分钟为周期以“2015-01-30 14:00:00”为基础前4个时间单位的数据
df = get_price('000001.XSHE', end_date='2015-01-30 14:00:00',count=20, frequency='1d', fields=['open','close','high','low','volume','money'])
df["weekday"]=df.index.weekday
print(df)
这里0代表周一,这里如何转换为按“周”统计呢
.volume(成交量)和money(成交额)转换为总成交量和总成交额
from jqdatasdk import *
import pandas as pd#获取平安银行按1分钟为周期以“2015-01-30 14:00:00”为基础前4个时间单位的数据
df = get_price('000001.XSHE', end_date='2015-01-30 14:00:00',count=20, frequency='1d', fields=['open','close','high','low','volume','money'])
df["weekday"]=df.index.weekday
print(df)df_week = pd.DataFrame()
df_week['open'] = df['open'].resample('W').first()
df_week['close'] = df['close'].resample('W').last()
df_week['high'] = df['high'].resample('W').max()
df_week['low'] = df['low'].resample('W').min()
df_week['volume(sum)'] = df['volume'].resample('W').sum()
df_week['money(sum)'] = df['money'].resample('W').sum()print(df_week)
可以看到这里的2021-05-30是一个礼拜的最后一天。它对应的开盘价确实是这个数字。说明我们计算的周K数据是正确的。
收盘价就是每周收盘价最后一天的数据。
最高价就是每周收盘价的最大值。
最低价就是每周收盘价的最小值。
日K 转换为 月K
假设我有一年的数据,如果想转换为月K应该怎么转?
只需要改2个地方:
- 添加start_date获取到一整年的数据
- 将resample的参数改为M即可,M代表Month
#获取平安银行按1分钟为周期以“2015-01-30 14:00:00”为基础前4个时间单位的数据
df = get_price('000001.XSHE', end_date='2021-05-30 14:00:00', start_date='2020-05-30',frequency='1d', fields=['open','close','high','low','volume','money'])
df["weekday"]=df.index.weekday
print(df)df_week = pd.DataFrame()
df_week['open'] = df['open'].resample('M').first()
df_week['close'] = df['close'].resample('M').last()
df_week['high'] = df['high'].resample('M').max()
df_week['low'] = df['low'].resample('M').min()
df_week['volume(sum)'] = df['volume'].resample('M').sum()
df_week['money(sum)'] = df['money'].resample('M').sum()print(df_week)
这篇关于python resample转换日K数据 (二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!