【论文筛选】ReID候选调研对象 2020-08-04 (ing)

2023-11-07 16:40

本文主要是介绍【论文筛选】ReID候选调研对象 2020-08-04 (ing),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 关注问题 ReID
    • 1、表征学习: 类内变化、类间模糊
    • 2、数据泛化:在一个数据集中学习的模型,在新数据集中表现不佳
    • 3、训练速度:
  • Loss
    • 难样本采样三元组损失(Triplet loss with batch hard mining, TriHard loss): 距离最远的正样本距离越来越小, 距离最近的正样本距离越来越大
      • 论文: Alexander Hermans, Lucas Beyer, Bastian Leibe. In defense of the triplet loss for person reidentification[J]. arXiv preprint arXiv:1703.07737, 2017
    • 边界挖掘损失(Margin sample mining loss, MSML)
  • Video based
    • 基于视频序列的ReID
      • 论文: AMOC: Hao Liu, Zequn Jie, Karlekar Jayashree, Meibin Qi, Jianguo Jiang, Shuicheng Yan, Jiashi Feng. Video based person re-identification with accumulative motion context[J]. arXiv preprint arXiv:1701.00193,2017.
      • 其他相关论文
  • Method
    • Spindle Net网络 关节点识别
      • 论文: Haiyu Zhao, Maoqing Tian, Shuyang Sun, Jing Shao, Junjie Yan, Shuai Yi, Xiaogang Wang, Xiaoou Tang. Spindle net: Person re-identification with human body region guided feature decomposition and fusion[C]. CVPR, 2017.
    • 对遮挡的情况启发 权重标记
      • 论文: Song G, Leng B, Liu Y, et al. Region-based Quality Estimation Network for Large-scale Person Re-identification[J]. arXiv preprint arXiv:1711.08766, 2017.
  • 其他论文思考的参考思路
    • 1、 ReID 全尺度, 局部特征思路 (来自OSNet)
    • 2、 相似度度量 距离
  • 待查询列表
    • 马氏距离
    • 对多个特征求平均

关注问题 ReID

1、表征学习: 类内变化、类间模糊

2、数据泛化:在一个数据集中学习的模型,在新数据集中表现不佳

由不同re-ID数据集造成的差距,我们注意到这些差距通常反映在不同的图像样式,如亮度、颜色温度和角度(参见图1)。这些风格差异是由不同的照明条件和相机/设置在不同的摄像机网络特征。

3、训练速度:

Loss

难样本采样三元组损失(Triplet loss with batch hard mining, TriHard loss): 距离最远的正样本距离越来越小, 距离最近的正样本距离越来越大

论文: Alexander Hermans, Lucas Beyer, Bastian Leibe. In defense of the triplet loss for person reidentification[J]. arXiv preprint arXiv:1703.07737, 2017

传统的三元组随机从训练数据中抽样三张图片,这样的做法虽然比较简单,但是抽样出来的大部分都是简单易区分的样本对。如果大量训练的样本对都是简单的样本对,那么这是不利于网络学习到更好的表征。大量论文发现用更难的样本去训练网络能够提高网络的泛化能力,而采样难样本对的方法很多。

基于训练批量(Batch)的在线难样本采样方法——TriHard Loss。
在这里插入图片描述

边界挖掘损失(Margin sample mining loss, MSML)

**边界样本挖掘损失(MSML)是一种引入难样本采样思想的度量学习方法。**三元组损失只考虑了正负样本对之间的相对距离。**为了引入正负样本对之间的绝对距离,四元组损失加入一张负样本组成了四元组。**四元组损失也定义为:

在这里插入图片描述

在这里插入图片描述

Video based

基于视频序列的ReID

基于视频序列的方法最主要的不同点就是这类方法不仅考虑了图像的内容信息,还考虑了帧与帧之间的运动信息等。

基于单帧图像的方法主要思想是利用CNN来提取图像的空间特征,而基于视频序列的方法主要思想是利用CNN 来提取空间特征的同时利用递归循环网络(Recurrent neural networks, RNN)来提取时序特征
在这里插入图片描述

上图是非常典型的思路,网络输入为图像序列。每张图像都经过一个共享的CNN提取出图像空间内容特征,之后这些特征向量被输入到一个RNN网络去提取最终的特征。

最终的特征融合了单帧图像的内容特征和帧与帧之间的运动特征。

而这个特征用于代替前面单帧方法的图像特征来训练网络。

论文: AMOC: Hao Liu, Zequn Jie, Karlekar Jayashree, Meibin Qi, Jianguo Jiang, Shuicheng Yan, Jiashi Feng. Video based person re-identification with accumulative motion context[J]. arXiv preprint arXiv:1701.00193,2017.

AMOC的核心思想在于网络除了要提取序列图像的特征,还要提取运动光流的运动特征,其网络结构图如下图所示。AMOC拥有空间信息网络(Spatial network, Spat Nets)运动信息网络两个子网络。

图像序列的每一帧图像都被输入到Spat Nets来提取图像的全局内容特征。

而相邻的两帧将会送到Moti Nets来提取光流图特征。

之后空间特征和光流特征融合后输入到一个RNN来提取时序特征

通过AMOC网络,每个图像序列都能被提取出一个融合了内容信息、运动信息的特征

网络采用了分类损失和对比损失来训练模型。

融合了运动信息序列图像特征能够提高行人重识别的准确度。

其他相关论文

[17] Taiqing Wang, Shaogang Gong, Xiatian Zhu, Shengjin Wang. Person re-identification by discriminative selection in video ranking[J]. IEEE transactions on pattern analysis and machine intelligence, 2016.38(12):2501–2514.

[18] Dongyu Zhang, Wenxi Wu, Hui Cheng, Ruimao Zhang, Zhenjiang Dong, Zhaoquan Cai. Image-to-video person re-identification with temporally memorized similarity learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017.

[19] Jinjie You, Ancong Wu, Xiang Li, Wei-Shi Zheng. Top-push video-based person reidentification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:1345–1353.

[20] Xiaolong Ma, Xiatian Zhu, Shaogang Gong, Xudong Xie, Jianming Hu, Kin-Man Lam, Yisheng Zhong. Person re-identification by unsupervised video matching[J]. Pattern Recognition, 2017. 65:197–210.

[21] Niall McLaughlin, Jesus Martinez del Rincon, Paul Miller. Recurrent convolutional network for videobased person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:1325–1334.

[22] Rui Zhao, Wanli Oyang, Xiaogang Wang. Person re-identification by saliency learning[J]. IEEE transactions on pattern analysis and machine intelligence, 2017. 39(2):356–370.

[23] Hao Liu, Zequn Jie, Karlekar Jayashree, Meibin Qi, Jianguo Jiang, Shuicheng Yan, Jiashi Feng. Video based person re-identification with accumulative motion context[J]. arXiv preprint arXiv:1701.00193,2017.

[24] Song G, Leng B, Liu Y, et al. Region-based Quality Estimation Network for Large-scale Person Re-identification[J]. arXiv preprint arXiv:1711.08766, 2017.

Method

在这里插入图片描述

Spindle Net网络 关节点识别

论文: Haiyu Zhao, Maoqing Tian, Shuyang Sun, Jing Shao, Junjie Yan, Shuai Yi, Xiaogang Wang, Xiaoou Tang. Spindle net: Person re-identification with human body region guided feature decomposition and fusion[C]. CVPR, 2017.

对遮挡的情况启发 权重标记

论文: Song G, Leng B, Liu Y, et al. Region-based Quality Estimation Network for Large-scale Person Re-identification[J]. arXiv preprint arXiv:1711.08766, 2017.

在这里插入图片描述

如上图,文章认为在遮挡较严重的情况下,如果用一般的pooling会造成attention map变差,遮挡区域的特征会丢失很多。

而利用论文的方法每帧进行一个质量判断,就可以着重考虑那些比较完整的几帧,使得attention map比较完整。

而关键的实现就是利用一个pose estimation的网络,论文叫做landmark detector。

当landmark不完整的时候就证明存在遮挡,则图片质量就会变差。之后pose feature map和global feature map都同时输入到网络,让网络对每帧进行一个权重判断,**给高质量帧打上高权重,然后对feature map进行一个线性叠加。**思路比较简单但是还是比较让人信服的。

其他论文思考的参考思路

1、 ReID 全尺度, 局部特征思路 (来自OSNet)

首先,我们认为这些特征需要全尺度的,定义为变量同构和异构尺度的组合,每一个都由多个尺度的混合组成。从图1可以明显看出对全尺度特性的需求。为了匹配和区分人与冒名顶替者,与局部小区域(如鞋子、眼镜)和整体身体区域相对应的特征是很重要的。

例如,给定图1(a)(左)中的查询图像,查看全局范围的特性(例如,年轻人,白t恤+灰色短裤组合)将搜索范围缩小到真正的匹配(中)和冒名顶替者(右)。现在,局部尺度(local-scale)特征开始发挥作用——鞋子区域暴露了右边的人是骗子的事实(运动鞋vs.凉鞋)。

然而,对于更具挑战性的情况,即使是变量同构尺度的特征也不够。需要更复杂和更丰富的跨多个尺度的特性。例如,要消除图1(b)(右)中的冒名顶替者,需要在前面具有特定标识的白色T恤上添加一些特征。

请注意,这个标志本身并没有什么特别之处——如果没有白色T恤作为背景,它可能会与许多其他图案混淆。同样,白色T恤在夏天随处可见(如图1(a))。它是独特的组合,由跨越小(标志尺寸)和中(上身尺寸)尺度的异构特性捕获,这使得这些特性最有效。

2、 相似度度量 距离

待查询列表

马氏距离

MOT 因为欧氏距离忽略空间域分布的计算结果,所以增加里马氏距离作为运动信息的约束

对多个特征求平均

这篇关于【论文筛选】ReID候选调研对象 2020-08-04 (ing)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/364925

相关文章

JSON字符串转成java的Map对象详细步骤

《JSON字符串转成java的Map对象详细步骤》:本文主要介绍如何将JSON字符串转换为Java对象的步骤,包括定义Element类、使用Jackson库解析JSON和添加依赖,文中通过代码介绍... 目录步骤 1: 定义 Element 类步骤 2: 使用 Jackson 库解析 jsON步骤 3: 添

Spring常见错误之Web嵌套对象校验失效解决办法

《Spring常见错误之Web嵌套对象校验失效解决办法》:本文主要介绍Spring常见错误之Web嵌套对象校验失效解决的相关资料,通过在Phone对象上添加@Valid注解,问题得以解决,需要的朋... 目录问题复现案例解析问题修正总结  问题复现当开发一个学籍管理系统时,我们会提供了一个 API 接口去

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

vue如何监听对象或者数组某个属性的变化详解

《vue如何监听对象或者数组某个属性的变化详解》这篇文章主要给大家介绍了关于vue如何监听对象或者数组某个属性的变化,在Vue.js中可以通过watch监听属性变化并动态修改其他属性的值,watch通... 目录前言用watch监听深度监听使用计算属性watch和计算属性的区别在vue 3中使用watchE

Java将时间戳转换为Date对象的方法小结

《Java将时间戳转换为Date对象的方法小结》在Java编程中,处理日期和时间是一个常见需求,特别是在处理网络通信或者数据库操作时,本文主要为大家整理了Java中将时间戳转换为Date对象的方法... 目录1. 理解时间戳2. Date 类的构造函数3. 转换示例4. 处理可能的异常5. 考虑时区问题6.

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快