用微雪RP2040-LCD-1.28设计一款模拟电子表,带屏PICO应用

2023-11-07 14:59

本文主要是介绍用微雪RP2040-LCD-1.28设计一款模拟电子表,带屏PICO应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

微雪RP2040-LCD-1.28介绍

微雪RP2040-LCD-1.28 是一款国内创新设计的PICO微控制器开发板,其在较小的板型情况下,板载了1.28inch LCD、锂电池充电芯片、六轴传感器(三轴加速度与三轴陀螺仪)等外设。

屏幕及驱动板参数

LCD参数
控制芯片GC9A01A分辨率240(H)RGB x 240(V)
通信接口SPI显示尺寸Φ32.4mm
显示面板IPS像素大小0.135(H)x0.135(V)mm        

圆形显示器的座标问题,X轴Y轴方向

设计开始之前,我跟大家一样好像,这个圆型的屏幕,座标圆点在哪里,X,Y分别是什么方向的。其实圆形的屏幕,跟我们平时用的长方形的显示器一样,你把它想象成一块长方形的显示器,座标圆点在左下角,X轴向右,Y轴向上,超出圆形的像素不显示。

这是程序的最终运行结果

# 导入需要的库
import machine
from machine import Pin,I2C,SPI,PWM,ADC
import time
import math
import framebufI2C_SDA = 6
I2C_SDL = 7DC = 8
CS = 9
SCK = 10
MOSI = 11
RST = 12
BL = 25# 显示屏驱动类
class LCD_GC9A01A(framebuf.FrameBuffer):def __init__(self):self.width = 240self.height = 240self.cs = Pin(CS,Pin.OUT)self.rst = Pin(RST,Pin.OUT)self.cs(1)self.spi = SPI(1,100_000_000,polarity=0, phase=0,sck=Pin(SCK),mosi=Pin(MOSI),miso=None)self.dc = Pin(DC,Pin.OUT)self.dc(1)self.buffer = bytearray(self.height * self.width * 2)super().__init__(self.buffer, self.width, self.height, framebuf.RGB565)self.init_display()self.red   =   0x07E0self.green =   0x001fself.blue  =   0xf800self.white =   0xffffself.fill(self.white)self.show()self.pwm = PWM(Pin(BL))self.pwm.freq(5000)def write_cmd(self, cmd):self.cs(1)self.dc(0)self.cs(0)self.spi.write(bytearray([cmd]))self.cs(1)def write_data(self, buf):self.cs(1)self.dc(1)self.cs(0)self.spi.write(bytearray([buf]))self.cs(1)def set_pwm(self,duty):self.pwm.duty_u16(duty)           #max 65535def init_display(self):"""Initialize dispaly"""  self.rst(1)time.sleep(0.01)self.rst(0)time.sleep(0.01)self.rst(1)time.sleep(0.05)self.write_cmd(0xEF)self.write_cmd(0xEB)self.write_data(0x14) self.write_cmd(0xFE) self.write_cmd(0xEF) self.write_cmd(0xEB)self.write_data(0x14) self.write_cmd(0x84)self.write_data(0x40) self.write_cmd(0x85)self.write_data(0xFF) self.write_cmd(0x86)self.write_data(0xFF) self.write_cmd(0x87)self.write_data(0xFF)self.write_cmd(0x88)self.write_data(0x0A)self.write_cmd(0x89)self.write_data(0x21) self.write_cmd(0x8A)self.write_data(0x00) self.write_cmd(0x8B)self.write_data(0x80) self.write_cmd(0x8C)self.write_data(0x01) self.write_cmd(0x8D)self.write_data(0x01) self.write_cmd(0x8E)self.write_data(0xFF) self.write_cmd(0x8F)self.write_data(0xFF) self.write_cmd(0xB6)self.write_data(0x00)self.write_data(0x20)self.write_cmd(0x36)self.write_data(0x98)self.write_cmd(0x3A)self.write_data(0x05) self.write_cmd(0x90)self.write_data(0x08)self.write_data(0x08)self.write_data(0x08)self.write_data(0x08) self.write_cmd(0xBD)self.write_data(0x06)self.write_cmd(0xBC)self.write_data(0x00)self.write_cmd(0xFF)self.write_data(0x60)self.write_data(0x01)self.write_data(0x04)self.write_cmd(0xC3)self.write_data(0x13)self.write_cmd(0xC4)self.write_data(0x13)self.write_cmd(0xC9)self.write_data(0x22)self.write_cmd(0xBE)self.write_data(0x11) self.write_cmd(0xE1)self.write_data(0x10)self.write_data(0x0E)self.write_cmd(0xDF)self.write_data(0x21)self.write_data(0x0c)self.write_data(0x02)self.write_cmd(0xF0)   self.write_data(0x45)self.write_data(0x09)self.write_data(0x08)self.write_data(0x08)self.write_data(0x26)self.write_data(0x2A)self.write_cmd(0xF1)    self.write_data(0x43)self.write_data(0x70)self.write_data(0x72)self.write_data(0x36)self.write_data(0x37)  self.write_data(0x6F)self.write_cmd(0xF2)   self.write_data(0x45)self.write_data(0x09)self.write_data(0x08)self.write_data(0x08)self.write_data(0x26)self.write_data(0x2A)self.write_cmd(0xF3)   self.write_data(0x43)self.write_data(0x70)self.write_data(0x72)self.write_data(0x36)self.write_data(0x37) self.write_data(0x6F)self.write_cmd(0xED)self.write_data(0x1B) self.write_data(0x0B) self.write_cmd(0xAE)self.write_data(0x77)self.write_cmd(0xCD)self.write_data(0x63)self.write_cmd(0x70)self.write_data(0x07)self.write_data(0x07)self.write_data(0x04)self.write_data(0x0E) self.write_data(0x0F) self.write_data(0x09)self.write_data(0x07)self.write_data(0x08)self.write_data(0x03)self.write_cmd(0xE8)self.write_data(0x34)self.write_cmd(0x62)self.write_data(0x18)self.write_data(0x0D)self.write_data(0x71)self.write_data(0xED)self.write_data(0x70) self.write_data(0x70)self.write_data(0x18)self.write_data(0x0F)self.write_data(0x71)self.write_data(0xEF)self.write_data(0x70) self.write_data(0x70)self.write_cmd(0x63)self.write_data(0x18)self.write_data(0x11)self.write_data(0x71)self.write_data(0xF1)self.write_data(0x70) self.write_data(0x70)self.write_data(0x18)self.write_data(0x13)self.write_data(0x71)self.write_data(0xF3)self.write_data(0x70) self.write_data(0x70)self.write_cmd(0x64)self.write_data(0x28)self.write_data(0x29)self.write_data(0xF1)self.write_data(0x01)self.write_data(0xF1)self.write_data(0x00)self.write_data(0x07)self.write_cmd(0x66)self.write_data(0x3C)self.write_data(0x00)self.write_data(0xCD)self.write_data(0x67)self.write_data(0x45)self.write_data(0x45)self.write_data(0x10)self.write_data(0x00)self.write_data(0x00)self.write_data(0x00)self.write_cmd(0x67)self.write_data(0x00)self.write_data(0x3C)self.write_data(0x00)self.write_data(0x00)self.write_data(0x00)self.write_data(0x01)self.write_data(0x54)self.write_data(0x10)self.write_data(0x32)self.write_data(0x98)self.write_cmd(0x74)self.write_data(0x10)self.write_data(0x85)self.write_data(0x80)self.write_data(0x00) self.write_data(0x00) self.write_data(0x4E)self.write_data(0x00)self.write_cmd(0x98)self.write_data(0x3e)self.write_data(0x07)self.write_cmd(0x35)self.write_cmd(0x21)self.write_cmd(0x11)time.sleep(0.12)self.write_cmd(0x29)time.sleep(0.02)self.write_cmd(0x21)self.write_cmd(0x11)self.write_cmd(0x29)def show(self):self.write_cmd(0x2A)self.write_data(0x00)self.write_data(0x00)self.write_data(0x00)self.write_data(0xef)self.write_cmd(0x2B)self.write_data(0x00)self.write_data(0x00)self.write_data(0x00)self.write_data(0xEF)self.write_cmd(0x2C)self.cs(1)self.dc(1)self.cs(0)self.spi.write(self.buffer)self.cs(1)lcd = LCD_GC9A01A()     # 实例化一个屏幕驱动,像素宽高为240X240
lcd.set_pwm(65535)             # 设置屏幕亮度,# 清空屏幕
lcd.fill(0xFFFFFF)# 计算圆心坐标和半径
center_x = 120
center_y = 120
radius = 100# 绘制指针和秒表圆弧
while True:# 绘制圆形边框和时间文字for i in range(1, 13):angle = 2 * math.pi * i / 12 - math.pi / 2x1 = center_x + int((radius + 14) * math.cos(angle))y1 = center_y + int((radius + 14) * math.sin(angle))lcd.text(str(i), x1 - 4, y1 - 4, 0x000000)x1 = center_x + int((radius + 8) * math.cos(angle))y1 = center_y + int((radius + 8) * math.sin(angle))x2 = center_x + int((radius - 10) * math.cos(angle))y2 = center_y + int((radius - 10) * math.sin(angle))lcd.line(x1, y1, x2, y2, 0x000000)# 获取当前时间current_time = time.localtime()# 计算小时指针、分钟指针和秒针的位置hour_angle = 2 * math.pi * (current_time[3] % 12 + current_time[4] / 60) / 12 - math.pi / 2hour_x = center_x + int((radius - 50) * math.cos(hour_angle))hour_y = center_y + int((radius - 50) * math.sin(hour_angle))minute_angle = 2 * math.pi * (current_time[4] + current_time[5] / 60) / 60 - math.pi / 2minute_x = center_x + int((radius - 30) * math.cos(minute_angle))minute_y = center_y + int((radius - 30) * math.sin(minute_angle))second_angle = 2 * math.pi * (current_time[5] + current_time[6] / 1000) / 60 - math.pi / 2second_x = center_x + int((radius - 10) * math.cos(second_angle))second_y = center_y + int((radius - 10) * math.sin(second_angle))# 绘制秒表圆弧#lcd.circle(center_x, center_y, radius - 5, 0x000000, width=2, start_angle=0, end_angle=int(360 * current_time[6] / 1000))# 绘制指针lcd.line(center_x, center_y, hour_x, hour_y, 0x0000FF)lcd.line(center_x, center_y, minute_x, minute_y, 0x00FF00)lcd.line(center_x, center_y, second_x, second_y, 0xFF0000)# 刷新屏幕lcd.show()# 暂停 1秒time.sleep(1)# 清空屏幕lcd.fill(0xFFFFFF)

 

这篇关于用微雪RP2040-LCD-1.28设计一款模拟电子表,带屏PICO应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/364415

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库

SpringBoot整合MybatisPlus的基本应用指南

《SpringBoot整合MybatisPlus的基本应用指南》MyBatis-Plus,简称MP,是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,下面小编就来和大家介绍一下... 目录一、MyBATisPlus简介二、SpringBoot整合MybatisPlus1、创建数据库和

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

Java逻辑运算符之&&、|| 与&、 |的区别及应用

《Java逻辑运算符之&&、||与&、|的区别及应用》:本文主要介绍Java逻辑运算符之&&、||与&、|的区别及应用的相关资料,分别是&&、||与&、|,并探讨了它们在不同应用场景中... 目录前言一、基本概念与运算符介绍二、短路与与非短路与:&& 与 & 的区别1. &&:短路与(AND)2. &:非短

CSS模拟 html 的 title 属性(鼠标悬浮显示提示文字效果)

《CSS模拟html的title属性(鼠标悬浮显示提示文字效果)》:本文主要介绍了如何使用CSS模拟HTML的title属性,通过鼠标悬浮显示提示文字效果,通过设置`.tipBox`和`.tipBox.tipContent`的样式,实现了提示内容的隐藏和显示,详细内容请阅读本文,希望能对你有所帮助... 效

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2