本文主要是介绍CodeForces 1266 E Spaceship Solitaire,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题意: 主人公想要造宇宙飞船,所以需要N种物资,每种物资的需求量是 a i a_{i} ai个。然后呢,如果我们没有任何加速器的话,总的时间需求是 ∑ i n a i \sum_{i}^{n}{a_{i}} ∑inai,但是现在我们有“里程碑”加速器!
里程碑加速器是这样的 「 S , T , U 」 「S,T,U」 「S,T,U」 我们如果有 T T T个 S S S物资的话,我们可以免费获得一个 U U U物资。如果已经出现过一次加速器下次再出现的话就不加速。
如果出现一个加速器并且出现的次数不比需要的多那就时间 − 1 -1 −1,如果已经出现过并且出现的次数小于等于需要的就把之前减去的时间加上。
AC代码:
#include <cstdio>
#include <vector>
#include <queue>
#include <cstring>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <stack>
#include <queue>
using namespace std;
#define sd(n) scanf("%d", &n)
#define sdd(n, m) scanf("%d%d", &n, &m)
#define sddd(n, m, k) scanf("%d%d%d", &n, &m, &k)
#define pd(n) printf("%d\n", n)
#define pc(n) printf("%c", n)
#define pdd(n, m) printf("%d %d", n, m)
#define pld(n) printf("%lld\n", n)
#define pldd(n, m) printf("%lld %lld\n", n, m)
#define sld(n) scanf("%lld", &n)
#define sldd(n, m) scanf("%lld%lld", &n, &m)
#define slddd(n, m, k) scanf("%lld%lld%lld", &n, &m, &k)
#define sf(n) scanf("%lf", &n)
#define sc(n) scanf("%c", &n)
#define sff(n, m) scanf("%lf%lf", &n, &m)
#define sfff(n, m, k) scanf("%lf%lf%lf", &n, &m, &k)
#define ss(str) scanf("%s", str)
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
#define mem(a, n) memset(a, n, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define pb push_back
#define all(x) (x).begin(), (x).end()
#define fi first
#define se second
#define mod(x) ((x) % MOD)
#define gcd(a, b) __gcd(a, b)
#define lowbit(x) (x & -x)
typedef pair<int, int> PII;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const int MOD = 1e9 + 7;
const double eps = 1e-9;
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
inline int read()
{int ret = 0, sgn = 1;char ch = getchar();while (ch < '0' || ch > '9'){if (ch == '-')sgn = -1;ch = getchar();}while (ch >= '0' && ch <= '9'){ret = ret * 10 + ch - '0';ch = getchar();}return ret * sgn;
}
inline void Out(int a) //Êä³öÍâ¹Ò
{if (a > 9)Out(a / 10);putchar(a % 10 + '0');
}ll gcd(ll a, ll b)
{return b == 0 ? a : gcd(b, a % b);
}ll lcm(ll a, ll b)
{return a * b / gcd(a, b);
}
///快速幂m^k%mod
ll qpow(int m, int k, int mod)
{ll res = 1, t = m;while (k){if (k & 1)res = res * t % mod;t = t * t % mod;k >>= 1;}return res;
}// 快速幂求逆元
int Fermat(int a, int p) //费马求a关于b的逆元
{return qpow(a, p - 2, p);
}///扩展欧几里得
int exgcd(int a, int b, int &x, int &y)
{if (b == 0){x = 1;y = 0;return a;}int g = exgcd(b, a % b, x, y);int t = x;x = y;y = t - a / b * y;return g;
}///使用ecgcd求a的逆元x
int mod_reverse(int a, int p)
{int d, x, y;d = exgcd(a, p, x, y);if (d == 1)return (x % p + p) % p;elsereturn -1;
}///中国剩余定理模板
ll china(int a[], int b[], int n) //a[]为除数,b[]为余数
{int M = 1, y, x = 0;for (int i = 0; i < n; ++i) //算出它们累乘的结果M *= a[i];for (int i = 0; i < n; ++i){int w = M / a[i];int tx = 0;int t = exgcd(w, a[i], tx, y); //计算逆元x = (x + w * (b[i] / t) * x) % M;}return (x + M) % M;
}const int N = 200011;
int n, a[N];
int m[N];
map<int, int> vis[N];
ll ans;int main()
{sd(n);ans = 0;rep(i, 1, n){scanf("%d", &a[i]);ans += a[i];}int q;sd(q);int s, t, u;while (q--){sddd(s, t, u);if (vis[s][t]){if (m[vis[s][t]] <= a[vis[s][t]])ans++;m[vis[s][t]]--;}vis[s][t] = u;if (m[u] < a[u])ans--;m[u]++;printf("%lld\n", ans);}return 0;
}
这篇关于CodeForces 1266 E Spaceship Solitaire的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!