自助法(bootstrapping)划分数据集

2023-11-07 13:38

本文主要是介绍自助法(bootstrapping)划分数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自助法(bootstrapping)划分数据集

一、前戏

Bootstrap方法是非常有用的一种统计学上的估计方法,是斯坦福统计系的教授Bradley Efron(我曾有幸去教授办公室约谈了一次)在总结、归纳前人研究成果的基础上提出一种新的非参数统计方法。Bootstrap是一类非参数Monte Carlo方法,其实质是对观测信息进行再抽样,进而对总体的分布特性进行统计推断。
因为该方法充分利用了给定的观测信息,不需要模型其他的假设和增加新的观测,并且具有稳健性和效率高的特点。1980年代以来,随着计算机技术被引入到统计实践中来,此方法越来越受欢迎,在机器学习领域应用也很广泛。

首先,Bootstrap通过重抽样,可以避免了Cross-Validation造成的样本减少问题,其次,Bootstrap也可以用于创造数据的随机性。比如,我们所熟知的随机森林算法第一步就是从原始训练数据集中,应用bootstrap方法有放回地随机抽取k个新的自助样本集,并由此构建k棵分类回归树。

多数情况下采用留出法(hold-out),即从数据集中分层采样(stratified sampling)出约30%的数据作为测试集。分层采样的目的是要保持数据分布的一致性,避免划分过程引入额外的偏差。

在留出法中因为保留一部分样本用于测试了,导致训练的样本就少了。数据集的规模大点还好,当数据集比较少时,这样划分的方法就会浪费宝贵的数据资源。


二、正题

“自助法”(bootstrapping)以自助采样(可重复采样、有放回采样)为基础。

假如一个数据集D有m个样本,看看训练集和测试集怎么选择:

  • 训练集D':每次从数据集D中随机选择一个样本,将这个样本复制一个放到D'中,然后再把原样本放回去(可放回)。重复操作m次。这样D'中就有m个样本了。这种采样方法有可能一个样本会被选择好多次,也有可能有的样本一次也不会被选择到。
  • 测试集D-D':测试集就是那些剩下的,没被选择的样本。

那么训练集D和测试集D'中共有多少数据呢?

可以看出数据集中样本在m次始终不被采样到的概率是(1-\frac{1}{m})^{m},取极限得:

                                            \lim_{m\rightarrow \propto }(1-\frac{1}{m})^{m}=\frac{1}{e}\approx 0.368

所以数据集D中有36.8%的样本未出现在训练集中。

优缺点:

  • 数据集小、难以划分训练\测试集
  • 自助法能从初始数据集中产生多个不同的训练集,可以用于集成学习
  • 自助法产生的训练集改变了初始数据集的分布,会引入估计偏差

 

bootstrapping参考网页

这篇关于自助法(bootstrapping)划分数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/363963

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名