怎样判断一个数为素数

2023-11-07 13:36
文章标签 判断 怎样 素数 数为

本文主要是介绍怎样判断一个数为素数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.素数的定义

\quad 素数(Prime Number)是指大于1的自然数(正整数),且只能被1和它本身整除的数。

2.程序设计思路

\quad 1)特殊情况处理:首先,检查输入的整数是否小于等于1。素数的定义排除了小于等于1的数,所以如果输入小于等于1的数,可以直接返回False。
\quad 2)检查可能的因子:对于大于1的整数,需要从2开始逐个检查可能的因子,一直到这个数的平方根(√n)为止。这是因为如果一个数n有一个大于√n的因子,那么它必然也有一个小于√n的因子,因此不需要检查大于√n的数。
$\quad$3)逐个检查因子:从2开始,逐个检查这些可能的因子是否能整除给定的整数。如果找到一个能整除的因子,就可以确定这个数不是素数,返回False。如果没有找到任何能整除的因子,就可以确定这个数是素数,返回True。

3.程序实现

def is_prime(number):if number <=1:return Falseif number <=3:return Trueif number % 2 == 0 or number % 3 == 0:return Falsei = 5while i * i <= number:if number % i == 0 or number % (i+2) == 0:return Falsei += 6return True 

4.验证

number1 = int(input("请输入一个整数:"))
if is_prime(number1):print(f'{number1}是素数。')
else:print(f'{number1}不是素数。')

5.为什么要定义i=5

\quad 在高效的素数判断函数中,初始化 i=5 是一个优化技巧,用来跳过一些不必要的检查,从而加快素数判断的速度。这是因为大多数素数可以表示为6的倍数加1或加5(6n ± 1,其中 n 是非负整数)。因此,我们只需要检查这两种形式的数是否是素数,跳过其他情况,从而减少检查的次数。
具体地,函数中的 i 变量从5开始,然后在每次迭代中以步长6递增(即 i += 6),这是因为:
\quad i 为5时,表示6n - 1形式的数。
\quad i + 2 为7时,表示6n + 1形式的数。
\quad 这个方法将素数检查的精力集中在了可能是素数的6的倍数加1和加5的数字上,跳过了那些不可能是素数的数字,提高了算法的效率。
\quad 这是一种常见的素数检查优化方法,通常被称为“6k ± 1 优化”。通过避免不必要的检查,可以加快素数判断的速度,特别是在处理大整数时。

这篇关于怎样判断一个数为素数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/363960

相关文章

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

zoj 1721 判断2条线段(完全)相交

给出起点,终点,与一些障碍线段。 求起点到终点的最短路。 枚举2点的距离,然后最短路。 2点可达条件:没有线段与这2点所构成的线段(完全)相交。 const double eps = 1e-8 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;

POJ1269 判断2条直线的位置关系

题目大意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。 解题思路: 先判断两条直线p1p2, q1q2是否共线, 如果不是,再判断 直线 是否平行, 如果还不是, 则两直线相交。  判断共线:  p1p2q1 共线 且 p1p2q2 共线 ,共线用叉乘为 0  来判断,  判断 平行:  p1p

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int

【408DS算法题】039进阶-判断图中路径是否存在

Index 题目分析实现总结 题目 对于给定的图G,设计函数实现判断G中是否含有从start结点到stop结点的路径。 分析实现 对于图的路径的存在性判断,有两种做法:(本文的实现均基于邻接矩阵存储方式的图) 1.图的BFS BFS的思路相对比较直观——从起始结点出发进行层次遍历,遍历过程中遇到结点i就表示存在路径start->i,故只需判断每个结点i是否就是stop

linux 判断某个命令是否安装

linux 判断某个命令是否安装 if ! [ -x "$(command -v git)" ]; thenecho 'Error: git is not installed.' >&2exit 1fi

LabVIEW程序员是怎样成长为大佬

成为一名LabVIEW编程领域的“大佬”需要时间、实践、学习和解决复杂问题的经验。尽管LabVIEW作为一种图形化编程语言在初期可能相对容易上手,但要真正成为精通者,需要在多个层面上深入理解。以下是LabVIEW程序员如何逐步成长为“大佬”的路径: 1. 打好基础 LabVIEW的大佬们通常在初期会打下非常坚实的基础,理解LabVIEW编程的核心概念,包括: 数据流编程模型:Lab