本文主要是介绍面试官:如何在十亿个单词字典中,判断某个单词是否存在?(布隆过滤器),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
如何在十亿个单词表中查找某个单词是否出现呢?答案已经给出来了,那就是使用布隆过滤器。那这个布隆过滤器是什么呢?下面就好好讲讲,方便在面试中提高你的zhuangbility。
一、认识布隆过滤器
1、概念
布隆过滤器其实就是加快判定一个元素是否在集合中出现的方法。比如说在一个大字典中,要查找某个单词是否存在,于是我们就可以使用布隆过滤器,快速高效省时省力。
2、原理
既然布隆过滤器这么优秀,他是如何实现的呢?举一个比较黄一点的例子,未成年人勿进,我们知道在我们身边充斥着各种各样的XX网站,为了不毒害我们祖国的花朵,于是国家网警就开始对这些网站进行割除过滤,然后关闭。关闭的时候呢就是关闭他的地址。现在问题来了。
这些网站的地址其实是不停的更换的,这些垃圾网站和正常网站加起来全世界据统计也有几十亿个。这些网警拿到一个地址之后总不能到数据库里面一个一个去比较吧,这就带来了一系列问题。
(1)网站数量太多,存储起来比较麻烦。一个地址最起码有32个字节,一亿个地址就需要1.6G的内存。
(2)一个一个比较,太费时间了。
布隆过滤器是如何高效的呢?他的底层其实是一个特比长的二进制向量和一系列随机映射函数。我们存储一亿个垃圾网站地址。
(1)第一步:建立一个32亿二进制(比特),也就是4亿字节的向量。全部置0。
(2)第二步:网警用八个不同的随机数产生器(F1,F2, …,F8) 产生八个信息指纹(f1, f2, …, f8)。
(3)第三步:用一个随机数产生器 G 把这八个信息指纹映射到 1 到32亿中的八个自然数 g1, g2, …,g8。
(4)第四步:把这八个位置的二进制全部设置为一。
OK,这就是其原理,现在网警把所有的垃圾网站地址全部存储下来了,有一天网警查到了一个可疑的网站,想判断一下是否是XX网站,于是就开始检查了。查询可疑网站是否存在集合中的时候,通过同样的方法将可疑网站通过哈希映射到32亿个比特位数组上的8个点。如果8个点的其中有一个点不为1,则可以判断该元素一定不存在集合中。
注意:如果8个点全部是1,也不能判断钙元素一定存在集合中,有一定的误差率。
二、代码实现布隆过滤器
上面只是给出了其原理,下面我们代码实现一下。
public class MyBloomFilter {// 2 << 25表示32亿个比特位private static final int DEFAULT_SIZE = 2 << 25 ;private static final int[] seeds = new int [] {3,5,7,11,13,19,23,37 };//这么大存储在BitSetprivate BitSet bits = new BitSet(DEFAULT_SIZE);private SimpleHash[] func = new SimpleHash[seeds.length];public static void main(String[] args) {//可疑网站String value = "www.java的架构师技术栈.com" ;MyBloomFilter filter = new MyBloomFilter();//加入之前判断一下System.out.println(filter.contains(value));filter.add(value);//加入之后判断一下System.out.println(filter.contains(value));}//构造函数public MyBloomFilter() {for ( int i = 0 ; i < seeds.length; i ++ ) {func[i] = new SimpleHash(DEFAULT_SIZE, seeds[i]);}}//添加网站public void add(String value) {for (SimpleHash f : func) {bits.set(f.hash(value), true );}}//判断可疑网站是否存在public boolean contains(String value) {if (value == null ) {return false ;}boolean ret = true ;for (SimpleHash f : func) {//核心就是通过“与”的操作ret = ret && bits.get(f.hash(value));}return ret;}
}
还有一个SimpleHash,我们看一下
public static class SimpleHash {private int cap;private int seed;public SimpleHash( int cap, int seed) {this .cap = cap;this .seed = seed;}public int hash(String value) {int result = 0 ;int len = value.length();for ( int i = 0 ; i < len; i ++ ) {result = seed * result + value.charAt(i);}return (cap - 1 ) & result;}}
- value.charAt(i);
}
return (cap - 1 ) & result;
}
}
``
这就是布隆过滤器的实现。
这篇关于面试官:如何在十亿个单词字典中,判断某个单词是否存在?(布隆过滤器)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!