本文主要是介绍深读源码-java集合之TreeMap源码分析(四),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
二叉树的遍历
我们知道二叉查找树的遍历有前序遍历、中序遍历、后序遍历。
(1)前序遍历,先遍历我,再遍历我的左子节点,最后遍历我的右子节点;
(2)中序遍历,先遍历我的左子节点,再遍历我,最后遍历我的右子节点;
(3)后序遍历,先遍历我的左子节点,再遍历我的右子节点,最后遍历我;
这里的前中后都是以“我”的顺序为准的,我在前就是前序遍历,我在中就是中序遍历,我在后就是后序遍历。
下面让我们看看经典的中序遍历是怎么实现的:
public class TreeMapTest {public static void main(String[] args) {// 构建一颗10个元素的树TreeNode<Integer> node = new TreeNode<>(1, null).insert(2).insert(6).insert(3).insert(5).insert(9).insert(7).insert(8).insert(4).insert(10);// 中序遍历,打印结果为1到10的顺序node.root().inOrderTraverse();}
}/*** 树节点,假设不存在重复元素* @param <T>*/
class TreeNode<T extends Comparable<T>> {T value;TreeNode<T> parent;TreeNode<T> left, right;public TreeNode(T value, TreeNode<T> parent) {this.value = value;this.parent = parent;}/*** 获取根节点*/TreeNode<T> root() {TreeNode<T> cur = this;while (cur.parent != null) {cur = cur.parent;}return cur;}/*** 中序遍历*/void inOrderTraverse() {if(this.left != null) this.left.inOrderTraverse();System.out.println(this.value);if(this.right != null) this.right.inOrderTraverse();}/*** 经典的二叉树插入元素的方法*/TreeNode<T> insert(T value) {// 先找根元素TreeNode<T> cur = root();TreeNode<T> p;int dir;// 寻找元素应该插入的位置do {p = cur;if ((dir=value.compareTo(p.value)) < 0) {cur = cur.left;} else {cur = cur.right;}} while (cur != null);// 把元素放到找到的位置if (dir < 0) {p.left = new TreeNode<>(value, p);return p.left;} else {p.right = new TreeNode<>(value, p);return p.right;}}
}
TreeMap的遍历
从上面二叉树的遍历我们很明显地看到,它是通过递归的方式实现的,但是递归会占用额外的空间,直接到线程栈整个释放掉才会把方法中申请的变量销毁掉,所以当元素特别多的时候是一件很危险的事。
(上面的例子中,没有申请额外的空间,如果有声明变量,则可以理解为直到方法完成才会销毁变量)
那么,有没有什么方法不用递归呢?
让我们来看看java中的实现:
@Override
public void forEach(BiConsumer<? super K, ? super V> action) {Objects.requireNonNull(action);// 遍历前的修改次数int expectedModCount = modCount;// 执行遍历,先获取第一个元素的位置,再循环遍历后继节点for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {// 执行动作action.accept(e.key, e.value);// 如果发现修改次数变了,则抛出异常if (expectedModCount != modCount) {throw new ConcurrentModificationException();}}
}
是不是很简单?!
(1)寻找第一个节点;
从根节点开始找最左边的节点,即最小的元素。
final Entry<K,V> getFirstEntry() {Entry<K,V> p = root;// 从根节点开始找最左边的节点,即最小的元素if (p != null)while (p.left != null)p = p.left;return p;}
(2)循环遍历后继节点;
寻找后继节点这个方法我们在删除元素的时候也用到过,当时的场景是有右子树,则从其右子树中寻找最小的节点。
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {if (t == null)// 如果当前节点为空,返回空return null;else if (t.right != null) {// 如果当前节点有右子树,取右子树中最小的节点Entry<K,V> p = t.right;while (p.left != null)p = p.left;return p;} else {// 如果当前节点没有右子树// 如果当前节点是父节点的左子节点,直接返回父节点// 如果当前节点是父节点的右子节点,一直往上找,直到找到一个祖先节点是其父节点的左子节点为止,返回这个祖先节点的父节点Entry<K,V> p = t.parent;Entry<K,V> ch = t;while (p != null && ch == p.right) {ch = p;p = p.parent;}return p;}
}
让我们一起来分析下这种方式的时间复杂度吧。
首先,寻找第一个元素,因为红黑树是接近平衡的二叉树,所以找最小的节点,相当于是从顶到底了,时间复杂度为O(log n);
其次,寻找后继节点,因为红黑树插入元素的时候会自动平衡,最坏的情况就是寻找右子树中最小的节点,时间复杂度为O(log k),k为右子树元素个数;
最后,需要遍历所有元素,时间复杂度为O(n);
所以,总的时间复杂度为 O(log n) + O(n * log k) ≈ O(n)。
虽然遍历红黑树的时间复杂度是O(n),但是它实际是要比跳表要慢一点的,啥?跳表是啥?安心,后面会讲到跳表的。
总结
到这里红黑树就整个讲完了,让我们再回顾下红黑树的特性:
(1)节点是红色或者黑色。
(2)根节点是黑色。
(3)每个叶子节点(NIL)是黑色。(注意:这里叶子节点,是指为空(NIL或NULL)的叶子节点!)
(4)如果一个节点是红色的,则它的子节点必须是黑色的。(从每个叶子到根的所有路径上不能有两个连续的红色节点。)
(5)从任一节点到其每个叶子的所有简单路径都包含相同数目的黑色节点。
除了上述这些标准的红黑树的特性,你还能讲出来哪些TreeMap的特性呢?
(1)TreeMap的存储结构只有一颗红黑树;
(2)TreeMap中的元素是有序的,按key的顺序排列;
(3)TreeMap比HashMap要慢一些,因为HashMap前面还做了一层桶,寻找元素要快很多;
(4)TreeMap没有扩容的概念;
(5)TreeMap的遍历不是采用传统的递归式遍历;
(6)TreeMap可以按范围查找元素,查找最近的元素;
(7)欢迎补充...
原文链接:https://www.cnblogs.com/tong-yuan/p/10657637.html
这篇关于深读源码-java集合之TreeMap源码分析(四)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!