本文主要是介绍高电压功率放大器在压电微泵一体化自闭环微系统的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
案例:高电压功率放大器在压电微泵一体化自闭环微系统的应用
实验名称:压电微泵一体化自闭环微系统热管理技术研究
研究方向:
为了增强嵌入式液冷技术可行性与实用性,近年来国内外一些研究机构提出了一种新型的热管理技术方法。该方法主要思路是将散热系统的泵、阀、换热器、微流体结构及整个冷却工质回路等一体化集成,使冷却工质在系统内部自闭环地循环流动,实现对微系统内部大功率器件的一体化高效热管理。此方法有助于拓宽嵌入式微流体液冷技术的使用范围,从而解决小型化大功率电子设备的一体化散热问题。
实验内容:
设计了一种集成压电微泵的一体化热管理样机。该样机的主体材料使用加工工艺成熟且其热导率较高的铝合金(因合金组成成分不同,铝合金的热导率在200W/(m·K)左右变化)。金属储液箱盖板上集成了翅片结构的金属热沉,可有效增大整个系统壳体与外界环境的换热面积,从而增强换热性能。该样机集成的储液箱体积相对较大,目的是使回流的冷却工质有更多的时间与外界环境进行热交换,且较大的储液箱体积也可增加整个系统换热面积。储液箱中,进液口与出液口间采用隔墙设计成迂回的通路,防止从入液口流入的冷却工质直接从出液口流出,进而降低顶部热沉对冷却工质的换热效果。
图:压电微泵阵列供液流量的测试系统
测试系统:
上图为压电微泵阵列供液流量的测试系统。由图可以看出,用导管分别将集成储液箱入液口连接至外置储液池,出液口引出至量筒内。利用函数发生器与高电压功率放大器ATA-4052对压电微泵阵列施加交变的驱动信号,使其正常工作。通过测量一段时间内系统排出的冷却液体积计算出供液流量。经实测,该压电微泵阵列在工作频率150Hz、有效值105V正弦波电压信号的驱动下,供液流量达到最大值(为57mL/min)。
结论:
水无毒、无污染且比热容较高,具有良好的储热性能,是一种较常用的冷却液。因此,在高温和常温环境下,热测试实验采用去离子水作为冷却工质,但在低温环境下,水将以固体的状态存在,无法作为液体冷却工质使用。而乙醇的熔点为-114.1℃,可在低温环境下保持液相,因此,在低温环境的热测试中使用乙醇作为冷却工质。下图为不同环境温度下的样机热测试结果。由图可以看出,常温下,芯片最高温度为79.9℃,而加热前芯片温度为24.4℃,因此,芯片表面的温升为55.5℃,此时芯片热耗为14.5W,由此可计算出热流密度为250.9W/cm2。
这篇关于高电压功率放大器在压电微泵一体化自闭环微系统的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!