caffe源码解析:卷积乘法中用到的im2col及col2im

2023-11-07 05:59

本文主要是介绍caffe源码解析:卷积乘法中用到的im2col及col2im,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这两个函数其实完成的功能比较简单,im2col就是把矩阵按卷积乘法所需,变换成列向量,col2im是一个逆过程

从下面这张图你一眼就能看明白im2col的操作(caffe中卷积计算都是Matrix_Kernel * Matrix_Col),因为都列出来太长了,我只列出了前4个,注意这是四周围完全没有填充0的情况,

 

col2im是一个反过来的过程,那么你可能会好奇,这两个操作能完全可逆吗?

事实上,结构是可逆的,结果不是,下面这个图很好地说明了展开的计算过程(图片比较大,可下载到电脑上看),

下面是一个可单独运行的测试源码,你可以随便编译跑一跑

#include <iostream>
using namespace std;inline bool is_a_ge_zero_and_a_lt_b(int a, int b) {return static_cast<unsigned>(a) < static_cast<unsigned>(b);
}template <typename Dtype>
void caffe_set(const int N, const Dtype alpha, Dtype* Y) {if (alpha == 0) {memset(Y, 0, sizeof(Dtype) * N);  // NOLINT(caffe/alt_fn)return;}for (int i = 0; i < N; ++i) {Y[i] = alpha;}
}template <typename Dtype>
void im2col_cpu(const Dtype* data_im, const int channels,const int height, const int width, const int kernel_h, const int kernel_w,const int pad_h, const int pad_w,const int stride_h, const int stride_w,const int dilation_h, const int dilation_w,Dtype* data_col) {const int output_h = (height + 2 * pad_h -(dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;const int output_w = (width + 2 * pad_w -(dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;const int channel_size = height * width;for (int channel = channels; channel--; data_im += channel_size) {for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) {for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {int input_row = -pad_h + kernel_row * dilation_h;for (int output_rows = output_h; output_rows; output_rows--) {if (!is_a_ge_zero_and_a_lt_b(input_row, height)) {for (int output_cols = output_w; output_cols; output_cols--) {*(data_col++) = 0;}}else {int input_col = -pad_w + kernel_col * dilation_w;for (int output_col = output_w; output_col; output_col--) {if (is_a_ge_zero_and_a_lt_b(input_col, width)) {*(data_col++) = data_im[input_row * width + input_col];}else {*(data_col++) = 0;}input_col += stride_w;}}input_row += stride_h;}}}}
}template <typename Dtype>
void col2im_cpu(const Dtype* data_col, const int channels,const int height, const int width, const int kernel_h, const int kernel_w,const int pad_h, const int pad_w,const int stride_h, const int stride_w,const int dilation_h, const int dilation_w,Dtype* data_im) {caffe_set(height * width * channels, Dtype(0), data_im);const int output_h = (height + 2 * pad_h -(dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;const int output_w = (width + 2 * pad_w -(dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;const int channel_size = height * width;for (int channel = channels; channel--; data_im += channel_size) {for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) {for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {int input_row = -pad_h + kernel_row * dilation_h;for (int output_rows = output_h; output_rows; output_rows--) {if (!is_a_ge_zero_and_a_lt_b(input_row, height)) {data_col += output_w;}else {int input_col = -pad_w + kernel_col * dilation_w;for (int output_col = output_w; output_col; output_col--) {if (is_a_ge_zero_and_a_lt_b(input_col, width)) {data_im[input_row * width + input_col] += *data_col;}data_col++;input_col += stride_w;}}input_row += stride_h;}}}}
}// 如果想运行6x6的矩阵,请取消下面的注释,并把5X5那段注释掉
int dataim[] = {1,2,3,4,5,6,5,6,7,8,9,10,6,5,4,3,2,1,10,9,8,7,6,5,4,3,2,1,5,6,3,2,1,6,5,4,
};int datacol[1000];
int outim[50];int main()
{im2col_cpu(dataim, 1, 6, 6, 3, 3, 0, 0, 1, 1, 1, 1, datacol);col2im_cpu(datacol, 1, 6, 6, 3, 3, 0, 0, 1, 1, 1, 1, outim);return 0;
}// 如果想运行5x5的矩阵,请取消下面的注释, 并把上面那段注释掉
/* 
int dataim[] = {1,2,3,4,5,6,7,8,9,10,5,4,3,2,1,10,9,8,7,6,4,3,2,1,5,
};int datacol[1000];
int outim[50];int main()
{im2col_cpu(dataim, 1, 5, 5, 3, 3, 0, 0, 1, 1, 1, 1, datacol);col2im_cpu(datacol, 1, 5, 5, 3, 3, 0, 0, 1, 1, 1, 1, outim);return 0;
}*/

按上面源码的操作,先运行im2col,再运行col2im,结果就很有意思了,相当于每个元素都乘了一个放大系数,只是不同的位置的放大系数是不一样的,看下面的图

仔细看那个放大系数矩阵,非常有规律,有木有?

AI视像算法学习群:824991413

这篇关于caffe源码解析:卷积乘法中用到的im2col及col2im的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/361692

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?