本文主要是介绍从一个点云中提取索引,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
附课本代码:
#include <iostream>
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/extract_indices.h>
int
main (int argc, char** argv)
{sensor_msgs::PointCloud2::Ptr cloud_blob (new sensor_msgs::PointCloud2), cloud_filtered_blob (new sensor_msgs::PointCloud2);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>), cloud_p (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);// 填入点云数据pcl::PCDReader reader;reader.read ("table_scene_lms400.pcd", *cloud_blob);std::cerr << "PointCloud before filtering: " << cloud_blob->width * cloud_blob->height << " data points." << std::endl;// 创建滤波器对象:使用叶大小为1cm的下采样pcl::VoxelGrid<sensor_msgs::PointCloud2> sor;sor.setInputCloud (cloud_blob);sor.setLeafSize (0.01f, 0.01f, 0.01f);sor.filter (*cloud_filtered_blob);// 转化为模板点云pcl::fromROSMsg (*cloud_filtered_blob, *cloud_filtered);std::cerr << "PointCloud after filtering: " << cloud_filtered->width * cloud_filtered->height << " data points." << std::endl;// 将下采样后的数据存入磁盘pcl::PCDWriter writer;writer.write<pcl::PointXYZ> ("table_scene_lms400_downsampled.pcd", *cloud_filtered, false);pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());pcl::PointIndices::Ptr inliers (new pcl::PointIndices ());// 创建分割对象pcl::SACSegmentation<pcl::PointXYZ> seg;// 可选seg.setOptimizeCoefficients (true);// 必选seg.setModelType (pcl::SACMODEL_PLANE);seg.setMethodType (pcl::SAC_RANSAC);seg.setMaxIterations (1000);seg.setDistanceThreshold (0.01);// 创建滤波器对象pcl::ExtractIndices<pcl::PointXYZ> extract;int i = 0, nr_points = (int) cloud_filtered->points.size ();// 当还有30%原始点云数据时while (cloud_filtered->points.size () > 0.3 * nr_points){// 从余下的点云中分割最大平面组成部分seg.setInputCloud (cloud_filtered);seg.segment (*inliers, *coefficients);if (inliers->indices.size () == 0){std::cerr << "Could not estimate a planar model for the given dataset." << std::endl;break;}// 分离内层extract.setInputCloud (cloud_filtered);extract.setIndices (inliers);extract.setNegative (false);extract.filter (*cloud_p);std::cerr << "PointCloud representing the planar component: " << cloud_p->width * cloud_p->height << " data points." << std::endl;std::stringstream ss;ss << "table_scene_lms400_plane_" << i << ".pcd";writer.write<pcl::PointXYZ> (ss.str (), *cloud_p, false);// 创建滤波器对象extract.setNegative (true);extract.filter (*cloud_f);cloud_filtered.swap (cloud_f);i++;}return (0);
}
相关对象函数说明:
1、pcl::PointIndices
This is the complete list of members for pcl::PointIndices, including all inherited members.
ConstPtr typedef | pcl::PointIndices | |
header | pcl::PointIndices | |
indices | pcl::PointIndices | |
PointIndices() | pcl::PointIndices | |
Ptr typedef | pcl::PointIndices |
2、SACSegmentation对象
(1)
void pcl::SACSegmentation<PointT >::setOptimizeCoefficients | ( | bool | optimize | ) |
Set to true if a coefficient refinement is required.//设置对估计的模型参数进行优化处理
- Parameters:
-
[in] optimize true for enabling model coefficient refinement, false otherwise
void pcl::SACSegmentation<PointT >::setModelType | ( | int | model | ) |
The type of model to use (user given parameter).
- Parameters:
-
[in] model the model type
void pcl::SACSegmentation<PointT >::setMethodType | ( | int | method | ) |
The type of sample consensus method to use (user given parameter).
- Parameters:
-
[in] method the method type
* SAC_RANSAC - RANdom SAmple Consensus
* SAC_LMEDS - Least Median of Squares
* SAC_MSAC - M-Estimator SAmple Consensus
* SAC_RRANSAC - Randomized RANSAC
* SAC_RMSAC - Randomized MSAC
* SAC_MLESAC - Maximum LikeLihood Estimation SAmple Consensus
* SAC_PROSAC - PROgressive SAmple Consensus
(4)
void pcl::SACSegmentation< PointT >::setMaxIterations | ( | int | max_iterations | ) |
Set the maximum number of iterations before giving up.
Parameters:[in] | max_iterations | the maximum number of iterations the sample consensus method will run |
void pcl::SACSegmentation< PointT >::setDistanceThreshold | ( | double | threshold | ) |
Distance to the model threshold (user given parameter). //设置判断是否为模型内点的距离阈值
Parameters:[in] | threshold | the distance threshold to use |
(6)
virtual void pcl::PCLBase< PointT >::setInputCloud | ( | const PointCloudConstPtr & | cloud | ) |
Provide a pointer to the input dataset.
- Parameters:
cloud the const boost shared pointer to a PointCloud message
void pcl::SACSegmentation< PointT >::segment | ( | PointIndices & | inliers, |
ModelCoefficients & | model_coefficients | ||
) |
Base method for segmentation of a model in a PointCloud given by <setInputCloud (), setIndices ()>
- Parameters:
[in] inliers the resultant point indices that support the model found (inliers) [out] model_coefficients the resultant model coefficients
void pcl::PCLBase< sensor_msgs::PointCloud2 >::setIndices | ( | const PointIndicesConstPtr & | indices | ) |
Provide a pointer to the vector of indices that represents the input data.
Parameters:indices | a pointer to the vector of indices that represents the input data. |
(2)
void pcl::PCLBase< sensor_msgs::PointCloud2 >::setInputCloud | ( | const PointCloud2ConstPtr & | cloud | ) |
Provide a pointer to the input dataset.
Parameters:
cloud | the const boost shared pointer to a PointCloud message |
(3)
void pcl::FilterIndices< sensor_msgs::PointCloud2 >::setNegative | ( | bool | negative | ) |
Set whether the regular conditions for points filtering should apply, or the inverted conditions.
Parameters:[in] | negative | false = normal filter behavior (default), true = inverted behavior. |
virtual void pcl::FilterIndices< sensor_msgs::PointCloud2 >::filter | ( | PointCloud2 & | output | ) |
Calls the filtering method and returns the filtered dataset in output.
void pcl::FilterIndices< sensor_msgs::PointCloud2 >::filter | ( | std::vector< int > & | indices | ) |
Calls the filtering method and returns the filtered point cloud indices.
这篇关于从一个点云中提取索引的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!