从一个点云中提取索引

2023-11-06 22:58
文章标签 提取 索引 云中 一个点

本文主要是介绍从一个点云中提取索引,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

附课本代码:

#include <iostream>
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/extract_indices.h>
int
main (int argc, char** argv)
{sensor_msgs::PointCloud2::Ptr cloud_blob (new sensor_msgs::PointCloud2), cloud_filtered_blob (new sensor_msgs::PointCloud2);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>), cloud_p (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);// 填入点云数据pcl::PCDReader reader;reader.read ("table_scene_lms400.pcd", *cloud_blob);std::cerr << "PointCloud before filtering: " << cloud_blob->width * cloud_blob->height << " data points." << std::endl;// 创建滤波器对象:使用叶大小为1cm的下采样pcl::VoxelGrid<sensor_msgs::PointCloud2> sor;sor.setInputCloud (cloud_blob);sor.setLeafSize (0.01f, 0.01f, 0.01f);sor.filter (*cloud_filtered_blob);// 转化为模板点云pcl::fromROSMsg (*cloud_filtered_blob, *cloud_filtered);std::cerr << "PointCloud after filtering: " << cloud_filtered->width * cloud_filtered->height << " data points." << std::endl;// 将下采样后的数据存入磁盘pcl::PCDWriter writer;writer.write<pcl::PointXYZ> ("table_scene_lms400_downsampled.pcd", *cloud_filtered, false);pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());pcl::PointIndices::Ptr inliers (new pcl::PointIndices ());// 创建分割对象pcl::SACSegmentation<pcl::PointXYZ> seg;// 可选seg.setOptimizeCoefficients (true);// 必选seg.setModelType (pcl::SACMODEL_PLANE);seg.setMethodType (pcl::SAC_RANSAC);seg.setMaxIterations (1000);seg.setDistanceThreshold (0.01);// 创建滤波器对象pcl::ExtractIndices<pcl::PointXYZ> extract;int i = 0, nr_points = (int) cloud_filtered->points.size ();// 当还有30%原始点云数据时while (cloud_filtered->points.size () > 0.3 * nr_points){// 从余下的点云中分割最大平面组成部分seg.setInputCloud (cloud_filtered);seg.segment (*inliers, *coefficients);if (inliers->indices.size () == 0){std::cerr << "Could not estimate a planar model for the given dataset." << std::endl;break;}// 分离内层extract.setInputCloud (cloud_filtered);extract.setIndices (inliers);extract.setNegative (false);extract.filter (*cloud_p);std::cerr << "PointCloud representing the planar component: " << cloud_p->width * cloud_p->height << " data points." << std::endl;std::stringstream ss;ss << "table_scene_lms400_plane_" << i << ".pcd";writer.write<pcl::PointXYZ> (ss.str (), *cloud_p, false);// 创建滤波器对象extract.setNegative (true);extract.filter (*cloud_f);cloud_filtered.swap (cloud_f);i++;}return (0);
}



相关对象函数说明:

1、pcl::PointIndices

This is the complete list of members for pcl::PointIndices, including all inherited members.

ConstPtr typedefpcl::PointIndices 
headerpcl::PointIndices 
indicespcl::PointIndices 
PointIndices()pcl::PointIndices 
Ptr typedefpcl::PointIndices

2、SACSegmentation对象

(1)

void pcl::SACSegmentation<PointT >::setOptimizeCoefficients(bool optimize)

Set to true if a coefficient refinement is required.//设置对估计的模型参数进行优化处理

Parameters:
[in]optimizetrue for enabling model coefficient refinement, false otherwise  
(2)
void pcl::SACSegmentation<PointT >::setModelType(int model)

The type of model to use (user given parameter).

Parameters:
[in]modelthe model type
(3)
void pcl::SACSegmentation<PointT >::setMethodType(int method)

The type of sample consensus method to use (user given parameter).

Parameters:
[in]methodthe method type 
    * SAC_RANSAC - RANdom SAmple Consensus
    * SAC_LMEDS - Least Median of Squares
    * SAC_MSAC - M-Estimator SAmple Consensus
    * SAC_RRANSAC - Randomized RANSAC
    * SAC_RMSAC - Randomized MSAC
    * SAC_MLESAC - Maximum LikeLihood Estimation SAmple Consensus
    * SAC_PROSAC - PROgressive SAmple Consensus

(4)
void pcl::SACSegmentation< PointT >::setMaxIterations(int max_iterations)

Set the maximum number of iterations before giving up. 

Parameters:
[in]max_iterationsthe maximum number of iterations the sample consensus method will run  
(5)
void pcl::SACSegmentation< PointT >::setDistanceThreshold(double threshold)

Distance to the model threshold (user given parameter). //设置判断是否为模型内点的距离阈值

Parameters:
[in]thresholdthe distance threshold to use 

(6)

virtual void pcl::PCLBase< PointT >::setInputCloud(const PointCloudConstPtr & cloud)

Provide a pointer to the input dataset.

Parameters:
cloudthe const boost shared pointer to a PointCloud message  
(7)
void pcl::SACSegmentation< PointT >::segment(PointIndices & inliers,
  ModelCoefficients & model_coefficients 
 )

Base method for segmentation of a model in a PointCloud given by <setInputCloud (), setIndices ()>

Parameters:
[in]inliersthe resultant point indices that support the model found (inliers)
[out]model_coefficientsthe resultant model coefficients 
3、ExtractIndices滤波器对象extracts a set of indices from a point cloud.(1)
void pcl::PCLBase< sensor_msgs::PointCloud2 >::setIndices(const PointIndicesConstPtr & indices)

Provide a pointer to the vector of indices that represents the input data.

Parameters:
indicesa pointer to the vector of indices that represents the input data.  

(2)

void pcl::PCLBase< sensor_msgs::PointCloud2 >::setInputCloud(const PointCloud2ConstPtr & cloud) 

Provide a pointer to the input dataset.

Parameters:

cloudthe const boost shared pointer to a PointCloud message

(3)

void pcl::FilterIndices< sensor_msgs::PointCloud2 >::setNegative(bool negative)

Set whether the regular conditions for points filtering should apply, or the inverted conditions.

Parameters:
[in]negativefalse = normal filter behavior (default), true = inverted behavior.
(4)

virtual void pcl::FilterIndices< sensor_msgs::PointCloud2 >::filter(PointCloud2 & output)

Calls the filtering method and returns the filtered dataset in output. 

void pcl::FilterIndices< sensor_msgs::PointCloud2 >::filter(std::vector< int > & indices) 

Calls the filtering method and returns the filtered point cloud indices. 

   

这篇关于从一个点云中提取索引的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/359555

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

贝壳面试:什么是回表?什么是索引下推?

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50+)中,最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格,遇到很多很重要的面试题: 1.谈谈你对MySQL 索引下推 的认识? 2.在MySQL中,索引下推 是如何实现的?请简述其工作原理。 3、说说什么是 回表,什么是 索引下推 ? 最近有小伙伴在面试 贝壳、soul,又遇到了相关的

Mysql高级篇(中)——索引介绍

Mysql高级篇(中)——索引介绍 一、索引本质二、索引优缺点三、索引分类(1)按数据结构分类(2)按功能分类(3) 按存储引擎分类(4) 按存储方式分类(5) 按使用方式分类 四、 索引基本语法(1)创建索引(2)查看索引(3)删除索引(4)ALTER 关键字创建/删除索引 五、适合创建索引的情况思考题 六、不适合创建索引的情况 一、索引本质 索引本质 是 一种数据结构,它用

ROS - C++实现RosBag包回放/提取

文章目录 1. 回放原理2. 回放/提取 多个话题3. 回放/提取数据包,并实时发布 1. 回放原理 #include <ros/ros.h>#include <rosbag/bag.h>#include <std_msgs/String.h>int main(int argc, char** argv){// 初始化ROS节点ros::init(argc, argv,

HalconDotNet中的图像特征与提取详解

文章目录 简介一、边缘特征提取二、角点特征提取三、区域特征提取四、纹理特征提取五、形状特征提取 简介   图像特征提取是图像处理中的一个重要步骤,用于从图像中提取有意义的特征,以便进行进一步的分析和处理。HalconDotNet提供了多种图像特征提取方法,每种方法都有其特定的应用场景和优缺点。 一、边缘特征提取   边缘特征提取是图像处理中最基本的特征提取方法之一,通过检

如何根据相同分隔符提取间隔数据?

最近遇到很多提问怎么提取字符的,而这些问题都有一个相同的特征,就是要提取的内容与内容之间,都有着相同的分隔符。当然,这种问题直接用“数据” →  “分列”功能就可以一步到位实现的,但有人喜欢折腾,而更多的人又非得指定函数公式的方法,或者更多的是要保持数据的同步性。   下面,我们就来讲讲用函数公式应该怎么实现这个提取,首先来个数据和要求,如下图,将 - 号间隔的内容依次提取到右边单元格内:

Java8特性:分组、提取字段、去重、过滤、差集、交集

总结下自己使用过的特性 将对象集合根据某个字段分组 //根据id分组Map<String, List<Bean>> newMap = successCf.stream().collect(Collectors.groupingBy(b -> b.getId().trim())); 获取对象集合里面的某个字段的集合 List<Bean> list = new ArrayList<>

ElasticSearch 6.1.1 通过Head插件,新建索引,添加文档,及其查询数据

ElasticSearch 6.1.1 通过Head插件,新建索引,添加文档,及其查询; 一、首先启动相关服务: 二、新建一个film索引: 三、建立映射: 1、通过Head插件: POST http://192.168.1.111:9200/film/_mapping/dongzuo/ {"properties": {"title": {"type":

ElasticSearch 6.1.1运用代码添加索引及其添加,修改,删除文档

1、新建一个MAVEN项目:ElasticSearchTest 2、修改pom.xml文件内容: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.or

postgres数据库中如何看查询是否走索引,以及在什么情况下走索引

在 PostgreSQL 中,可以通过 EXPLAIN 或 EXPLAIN ANALYZE 查看查询计划,以判断查询是否使用了索引。除此之外,了解索引的使用条件对于优化查询性能也很重要。 1. 如何查看查询是否使用索引 使用 EXPLAIN 查看查询计划 EXPLAIN 显示 PostgreSQL 如何执行查询,包括是否使用索引。 EXPLAIN SELECT * FROM users WH