飞桨平台搭建PP-YOLOE模型

2023-11-06 19:28

本文主要是介绍飞桨平台搭建PP-YOLOE模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、创建项目

此博客仅是运行PP-YOLOE源码,这里以变压器渗漏数据集为例COCO数据集太大了,跑不动,V100训练预估计得7天左右,即便是A100也得4天半,变压器渗漏油数据集跑一个小时左右,还可以接受,那么不墨迹直接进入手把手环节。
首先,进入百度搜索飞桨,进入云平台选择项目–>创建项目–>NoteBook
在这里插入图片描述
然后,输入项目名称,添加数据集(点击添加数据集,按需搜索即可,也可自己创建数据集)。之后点击高级配置,根据自己的需求选择合适的配置,我这里用到了PaddlePaddle2.5.0版本的框架,所以选择了BML Codelab(AI Studio没有PaddlePaddle2.5.0),之后项目框架选择PaddlePaddle2.5.0,选择项目的标签(可以根据项目选择随便选),项目描述可写。。。
在这里插入图片描述
在这里插入图片描述
之后,点击创建即可创建项目,并自动进入项目,点击启动环境即可进入项目编辑。
在这里插入图片描述

值得一提的是,点击启动环境之后,有一个选择环境的选项。百度每天会赠送算力卡8个点,基础版(无GPU)不浪费点,V100(16GB)一个小时2个点(相当于一天有4个小时免费),V100(32GB)一个小时3个点(相当于一天不到3个小时),如需更多时间或者更高级的GPU,需要开会员,花钱了,应该是一个月19.9RMB。
在这里插入图片描述

二、搭建PP-YOLOE模型

为了能多跑几个小时,保证科研的资源充分利用性,可以先用基础版启动环境,搭建模型,然后切换环境用V100甚至更好的GPU跑。
上图中点击确定后,点击进入 即可进入项目。
在这里插入图片描述
在这里插入图片描述

2.1 配置环境

输入如下程序,克隆PaddleDetection项目,因为我选的是PaddlePaddle2.5.0因此选择2.5版本项目。

%cd work/
# gitee 国内下载比较快
!git clone https://gitee.com/paddlepaddle/PaddleDetection.git -b release/2.5
# github 下载慢,需要等待很长时间
# !git clone https://github.com/PaddlePaddle/PaddleDetection.git -b release/2.5

此时程序被Clone到work文件夹下,点进去就可以看到项目。
在这里插入图片描述
然后一次输入如下的程序,配置所需要的环境和库(这里一步一步来,不要着急,一个一个运行)

#安装PaddleDetection依赖
!pip install -r /home/aistudio/work/PaddleDetection/requirements.txt
#编译安装paddledet
%cd work/PaddleDetection
!python setup.py install

#安装其他依赖
from PIL import Image  
import matplotlib.pyplot as plt
import numpy as np
import os 
import random
#测试安装是否成功,最后输出OK,说明编译安装成功
!python ppdet/modeling/tests/test_architectures.py

出现如下图片中的结果表示成功了
在这里插入图片描述
另外,还要装一个库pycocotools,后面训练会用到,不然会报错。

!pip install pycocotools

2.2 准备数据集

目前给出的数据集是VOC格式的,然而PP-YOLOE仅支持COCO数据集,因此需要将数据集进行转换,转换成COCO标准格式。
依次执行如下程序即可。注意:解压数据集时路径“data“后面要改,

#解压数据集
!unzip -oq /home/aistudio/data/data180502/oil.zip -d /home/aistudio/data/#划分数据集
#根据挂载的数据集制作制作标签文件,并进行划分
#生成train.txt和val.txt
random.seed(2020)
xml_dir  = '/home/aistudio/data/oil/Annotations'#标签文件地址
img_dir = '/home/aistudio/data/oil/JPEGImages'#图像文件地址
path_list = list()
for img in os.listdir(img_dir):img_path = os.path.join(img_dir,img)xml_path = os.path.join(xml_dir,img.replace('jpg', 'xml'))path_list.append((img_path, xml_path))
random.shuffle(path_list)
ratio = 0.8 #测试集和验证集划分比例0.8:0.2
train_f = open('/home/aistudio/data/oil/train.txt','w') #生成训练文件
val_f = open('/home/aistudio/data/oil/val.txt' ,'w')#生成验证文件for i ,content in enumerate(path_list):img, xml = contenttext = img + ' ' + xml + '\n'if i < len(path_list) * ratio:train_f.write(text)else:val_f.write(text)
train_f.close()
val_f.close()#生成标签文档
label = ['oil']#设置你想检测的类别
with open('/home/aistudio/data/oil/label_list.txt', 'w') as f:for text in label:f.write(text+'\n')

最终生成的数据集文件夹目录为
在这里插入图片描述

使用x2coco.py将voc格式的数据集转换成coco数据集 只需要将这四个参数指定成上面生成的标签文件即可

voc_anno_dir 总的标注文件

voc_anno_list 训练数据集文件列表

voc_label_list 标签文件

voc_out_name 输出的coco文件路径

!python tools/x2coco.py \--dataset_type voc \--voc_anno_dir /home/aistudio/data/oil/Annotations \--voc_anno_list /home/aistudio/data/oil/train.txt \--voc_label_list /home/aistudio/data/oil/label_list.txt \--voc_out_name /home/aistudio/data/oil/train.json
!python tools/x2coco.py \--dataset_type voc \--voc_anno_dir /home/aistudio/data/oil/Annotations \--voc_anno_list /home/aistudio/data/oil/val.txt \--voc_label_list /home/aistudio/data/oil/label_list.txt \--voc_out_name /home/aistudio/data/oil/valid.json
!mkdir oil
%cd oil
!mkdir images &&mkdir annotations
!mv /home/aistudio/data/oil/train.json /home/aistudio/work/PaddleDetection/oil/annotations
!mv /home/aistudio/data/oil/valid.json /home/aistudio/work/PaddleDetection/oil/annotations
!cp -r /home/aistudio/data/oil/JPEGImages/* /home/aistudio/work/PaddleDetection/oil/images/
%cd ..

这个是标准的COCO数据集格式
在这里插入图片描述

2.3 训练模型

在这就可以切换环境了,切换到V10032GB的,切记,切记,切记,不要在项目里切换,也有可能是我电脑太辣鸡了,切换不过来,我的失败了很多次,先停止环境再重新启动。
在这里插入图片描述

首先查看PP-YOLOE使用的配置文件PaddleDetection/configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml 可以看到依赖的相关配置文件如下图所示:
注意:这里将预训练权重换成coco数据集上的预训练权重,更多预训练权重
点击链接进入选择配置文件的config找到预训练权重,将其复制进去即可。(就一行)

在这里插入图片描述

在这里插入图片描述

具体的配置文件修改情况以及说明情况,请转至基于PaddleDetection的绝缘子的缺陷检测查看
另外,值得注意的是,coco_detection.yml的配置修改(位置是PaddleDetection/configs/datasets/coco_detection.yml),否则加载数据集失败,无法训练。
在这里插入图片描述
然后,输入程序开始训练。建议用第二条指令,可以边训练边评估,开启可视化。

#** 注意: ** 使用默认配置训练需要设置--amp以避免显存溢出.
#!python tools/train.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml --amp
#或者运行下面这条指令,边训练边评估,开启可视化
!python tools/train.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml --amp --eval --use_vdl=True --vdl_log_dir="output"

训练完是这样的。
在这里插入图片描述

3.4 评估模型

python -u work/PaddleDetection/tools/eval.py -c work/PaddleDetection/configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml  \
-o weights=/home/aistudio/output/ppyoloe_crn_l_300e_coco/best_model.pdparams

点击可视化–>设置logdir下面的添加,找到work/PaddleDetection/output,点击确定即可
在这里插入图片描述
之后点击启动VisualDL服务,再点击进入VisualDL,在弹出网页的左上角点击标量数据。
在这里插入图片描述
就可以看到各种可视化的图,起会跟着训练的过程随时更新。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于飞桨平台搭建PP-YOLOE模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/358585

相关文章

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

如何解决线上平台抽佣高 线下门店客流少的痛点!

目前,许多传统零售店铺正遭遇客源下降的难题。尽管广告推广能带来一定的客流,但其费用昂贵。鉴于此,众多零售商纷纷选择加入像美团、饿了么和抖音这样的大型在线平台,但这些平台的高佣金率导致了利润的大幅缩水。在这样的市场环境下,商家之间的合作网络逐渐成为一种有效的解决方案,通过资源和客户基础的共享,实现共同的利益增长。 以最近在上海兴起的一个跨行业合作平台为例,该平台融合了环保消费积分系统,在短

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影

搭建Kafka+zookeeper集群调度

前言 硬件环境 172.18.0.5        kafkazk1        Kafka+zookeeper                Kafka Broker集群 172.18.0.6        kafkazk2        Kafka+zookeeper                Kafka Broker集群 172.18.0.7        kafkazk3

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验