本文主要是介绍大语言模型的学习路线和开源模型的学习材料《二》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
第三层 LLMs to Artifact
第一重 langchain
- 【LLMs 入门实战 —— 十二 】基于 本地知识库 的高效 🤖langchain-ChatGLM
- 介绍:langchain-ChatGLM是一个基于本地知识的问答机器人,使用者可以自由配置本地知识,用户问题的答案也是基于本地知识生成的。
- 【LLMs 入门实战 —— 三十一 】Vicuna-LangChain 模型学习与实战
- 介绍:一个简单的类LangChain实现,基于Sentence Embedding+本地知识库,以Vicuna作为生成模型。支持中英双语,支持pdf、html和docx格式的文档作为知识 库。
- Vicuna-LangChain 思路
- 提取知识库文件夹中的文档文本,分割成chunk_length大小的文本块
- 通过shibing624/text2vec-base-chinese模型计算各文本块的嵌入
- 计算问题文本嵌入和各文本块的嵌入的余弦相似度
- 返回余弦相似度最高的k个文本作为给定信息生成prompt
- 将prompt历史替换为最初问的问题
- 将prompt交给vicuna模型生成答案
- 【LLMs 入门实战】基于 本地知识库 的高效 🤖langchain-
这篇关于大语言模型的学习路线和开源模型的学习材料《二》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!