python逻辑量有_用Python写几行代码,一分钟搞定一天工作量,同事直呼:好家伙!...

本文主要是介绍python逻辑量有_用Python写几行代码,一分钟搞定一天工作量,同事直呼:好家伙!...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,我是早起。

前几天有一个读者说最近要整理几千份文件,头都要整秃了,不知道能不能用Python解决,我们来看一下,你也可以思考一下。由于涉及文件私密所以具体内容已做脱敏处理。

大概是这样,一个文件夹下有多份会议通知信息(本文以 7 份文件为例)

format,png

每一份通知打开格式基本类似,如下所示👇

format,png

现在需要将每份会议文档中的 学习时间、学习内容、学习形式、主持人 四项关键信息提取出来,整理到 Excel 表格中:

format,png

在他真实需求中,会议通知四年积累下来有快 1000 份(四年开了这么多次会也是很厉害...),用人力挨个打开文件并录到 Excel 中工作量实在太大。

好家伙,这种重复的无聊工作, 不就是一份非常适合交给 Python 的自动化工作吗?我不允许我的粉丝还不会!

下面我们来看看如何用Python解决这个问题,主要将涉及:openpyxl 写入 Excel 文件

python-docx 读取 Word 文件

glob 批量获取文件路径

为了简化上面的需求,本文中需要获取的会议通知文件一共 7 个,分别命名为 会议通知1.docx 会议通知2.docx... 会议通知7.docx,存放在 Notice 文件夹下。输出的目标 Excel 文件命名为 Meeting_temp.xlsx

基本逻辑

写代码之前都先明确完整的问题需要分为几个小步骤实现。从需求中我们大概可以将代码分为以下几步:“获取会议通知 Notice 文件夹下的所有文件;

解析每一份 Word 文件,获取需要的四个信息,输出到 Excel 中;

保存 Excel 文件”

有了逻辑就有了写代码的思路了。第 1 步可以由 glob 库完成,后面两步就是操作 Word 的 python-docx 库和操作 Excel 的 openpyxl 库的交互协作了。

这两个库我们都有说过,如果你不熟悉,一定要先阅读下面的文章!

代码实现

首先导入需要的库:from docx import Document

from openpyxl import load_workbook

import glob

将模板 Excel 读取进程序:path  = r'C:\Users\xxx' # 路径为会议通知文件夹和 Excel 模板所在的位置,可按实际情况更改

workbook = load_workbook(path + r'\Meeting_temp.xlsx')

sheet = workbook.active

写任何批处理的代码之前都建议先写一下单次操作的代码,因此我们先完成对 会议通知 1.docx 文件的解析,确保无误。现在对于文档的结构和关键信息的位置尚不明确,可以先将 Word 以段落 Paragraph 为单位输出观察:wordfile = Document(path + r'\Notice\会议通知 1.docx')

for paragraph in wordfile.paragraphs:

    print(paragraph)format,png

文件的文字排布脉络比较清晰,基本是一句话对应一个段落,而需要的信息可以简单通过判断每句话(每段话)前几个字而明确:for paragraph in wordfile.paragraphs:

if paragraph.text[0:5] == '学习时间:':

study_time = paragraph.text[5:]

if paragraph.text[0:4] == '主持人:':

host = paragraph.text[4:]

if paragraph.text[0:5] == '学习形式:':

study_type = paragraph.text[5:]

对于学习内容的获取比较特殊,不像其他三个信息,都在一句话中,且关键字就为前几个字:

format,png

可以看到,“学习内容” 四个字和真正包含的内容分散在不同的句子中.

这里简单用一个策略:“

建立一个空列表存放,然后遍历每一段判断,如果一个字符为数字且第二个字符为中文顿号 “、” 就获取存放到列表中。最后把列表中的元素重新组合成一个长字符串即可:”content_lst = []

for paragraph in wordfile.paragraphs:

if paragraph.text[0:5] == '学习时间:':

study_time = paragraph.text[5:]

if paragraph.text[0:4] == '主持人:':

host = paragraph.text[4:]

if paragraph.text[0:5] == '学习形式:':

study_type = paragraph.text[5:]

if len(paragraph.text) >= 2:

if paragraph.text[0].isdigit() and paragraph.text[1] == '、':

content_lst.append(paragraph.text)

content = ' '.join(content_lst)

完成了解析 Word 文件之后,就需要把内容输出的 Excel 文件中了。

简单来说,就是将上面代码获取到的几个元素组合成一个列表,通过 sheet.append(list) 的方法写入 Excel 文件中:number = 0 # 全局中设置一个变量用于计数,做为序号输出

wordfile = Document(path + r'\Notice\会议通知 1.docx')

content_lst = []

for paragraph in wordfile.paragraphs:

if paragraph.text[0:5] == '学习时间:':

study_time = paragraph.text[5:]

if paragraph.text[0:4] == '主持人:':

host = paragraph.text[4:]

if paragraph.text[0:5] == '学习形式:':

study_type = paragraph.text[5:]

if len(paragraph.text) >= 2:

if paragraph.text[0].isdigit() and paragraph.text[1] == '、':

content_lst.append(paragraph.text)

content = ' '.join(content_lst)

number += 1

sheet.append([number, study_time, content, study_type, host])

单个文件解析完,用 glob 改完获取文件夹下全部文件,建立循环逐个解析就能完成本需求,当然最后记得保存 Excel 文件。

完整代码如下👇from docx import Document

from openpyxl import load_workbook

import glob

path  = r'C:\Users\xxx'

workbook = load_workbook(path + r'\Meeting_temp.xlsx')

sheet = workbook.active

number = 0

for file in glob.glob(path + r'\Notice\*.docx'):

wordfile = Document(file)

content_lst = []

for paragraph in wordfile.paragraphs:

if paragraph.text[0:5] == '学习时间:':

study_time = paragraph.text[5:]

if paragraph.text[0:4] == '主持人:':

host = paragraph.text[4:]

if paragraph.text[0:5] == '学习形式:':

study_type = paragraph.text[5:]

if len(paragraph.text) >= 2:

if paragraph.text[0].isdigit() and paragraph.text[1] == '、':

content_lst.append(paragraph.text)

content = ' '.join(content_lst)

number += 1

sheet.append([number, study_time, content, study_type, host])

workbook.save(path + r'\Meeting_notice.xlsx')

format,png

核心也不过三十行代码,总共不过三秒就搞定了!

如果你也想试试,可以在「早起Python」后台回复0118获取数据,并尝试用文中的代码实现。

本文的分享就到这里,如果喜欢本文的话,希望可以点赞、转发、在看支持早起,我们会在后续的办公自动化系列文章中分享更多实用的案例!-END-

format,png

文末给大家推荐一下狗熊会的深度学习笔记(作为一本以“笔记”命名的深度学习图书,主要定位是面向广大希望入门深度学习的初学者。本书以深度神经网络(DNN)、卷积神经网络(CNN)和循环神经网络(RNN)为核心,详细介绍了深度学习的理论基础、通用方法和三大网络的原理与实践。全书代码以Keras框架作为范例,对于初学者而言简单易懂),点击下方商品可以查看详情与购买!

这篇关于python逻辑量有_用Python写几行代码,一分钟搞定一天工作量,同事直呼:好家伙!...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/355271

相关文章

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall