人工智能-深度学习之延后初始化

2023-11-06 07:12

本文主要是介绍人工智能-深度学习之延后初始化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

到目前为止,我们忽略了建立网络时需要做的以下这些事情:

  • 我们定义了网络架构,但没有指定输入维度。

  • 我们添加层时没有指定前一层的输出维度。

  • 我们在初始化参数时,甚至没有足够的信息来确定模型应该包含多少参数。

有些读者可能会对我们的代码能运行感到惊讶。 毕竟,深度学习框架无法判断网络的输入维度是什么。 这里的诀窍是框架的延后初始化(defers initialization), 即直到数据第一次通过模型传递时,框架才会动态地推断出每个层的大小。

在以后,当使用卷积神经网络时, 由于输入维度(即图像的分辨率)将影响每个后续层的维数, 有了该技术将更加方便。 现在我们在编写代码时无须知道维度是什么就可以设置参数, 这种能力可以大大简化定义和修改模型的任务。 接下来,我们将更深入地研究初始化机制。

实例化网络

from mxnet import np, npx
from mxnet.gluon import nnnpx.set_np()def get_net():net = nn.Sequential()net.add(nn.Dense(256, activation='relu'))net.add(nn.Dense(10))return netnet = get_net()

此时,因为输入维数是未知的,所以网络不可能知道输入层权重的维数。 因此,框架尚未初始化任何参数,我们通过尝试访问以下参数进行确认。

print(net.collect_params)
print(net.collect_params())
<bound method Block.collect_params of Sequential((0): Dense(-1 -> 256, Activation(relu))(1): Dense(-1 -> 10, linear)
)>
sequential0_ (Parameter dense0_weight (shape=(256, -1), dtype=float32)Parameter dense0_bias (shape=(256,), dtype=float32)Parameter dense1_weight (shape=(10, -1), dtype=float32)Parameter dense1_bias (shape=(10,), dtype=float32)
)

注意,当参数对象存在时,每个层的输入维度为-1。 MXNet使用特殊值-1表示参数维度仍然未知。 此时,尝试访问net[0].weight.data()将触发运行时错误, 提示必须先初始化网络,然后才能访问参数。 现在让我们看看当我们试图通过initialize函数初始化参数时会发生什么。

net.initialize()
net.collect_params()
[07:01:36] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU
sequential0_ (Parameter dense0_weight (shape=(256, -1), dtype=float32)Parameter dense0_bias (shape=(256,), dtype=float32)Parameter dense1_weight (shape=(10, -1), dtype=float32)Parameter dense1_bias (shape=(10,), dtype=float32)
)

如我们所见,一切都没有改变。 当输入维度未知时,调用initialize不会真正初始化参数。 而是会在MXNet内部声明希望初始化参数,并且可以选择初始化分布。

接下来让我们将数据通过网络,最终使框架初始化参数。

X = np.random.uniform(size=(2, 20))
net(X)net.collect_params()
sequential0_ (Parameter dense0_weight (shape=(256, 20), dtype=float32)Parameter dense0_bias (shape=(256,), dtype=float32)Parameter dense1_weight (shape=(10, 256), dtype=float32)Parameter dense1_bias (shape=(10,), dtype=float32)
)

一旦我们知道输入维数是20,框架可以通过代入值20来识别第一层权重矩阵的形状。 识别出第一层的形状后,框架处理第二层,依此类推,直到所有形状都已知为止。 注意,在这种情况下,只有第一层需要延迟初始化,但是框架仍是按顺序初始化的。 等到知道了所有的参数形状,框架就可以初始化参数。 

这篇关于人工智能-深度学习之延后初始化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/355203

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Spring组件初始化扩展点BeanPostProcessor的作用详解

《Spring组件初始化扩展点BeanPostProcessor的作用详解》本文通过实战案例和常见应用场景详细介绍了BeanPostProcessor的使用,并强调了其在Spring扩展中的重要性,感... 目录一、概述二、BeanPostProcessor的作用三、核心方法解析1、postProcessB

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操