CCF-CSP真题《202309-3 梯度求解》思路+python,c++满分题解

2023-11-05 22:20

本文主要是介绍CCF-CSP真题《202309-3 梯度求解》思路+python,c++满分题解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

想查看其他题的真题及题解的同学可以前往查看:CCF-CSP真题附题解大全

试题编号:202309-3
试题名称:梯度求解
时间限制:1.0s
内存限制:512.0MB
问题描述:

背景

西西艾弗岛运营公司近期在大力推广智能化市政管理系统。这套系统是由西西艾弗岛信息中心研发的。它的主要目的是,通过详细评估岛上各处的市政设施的状况,来指导市政设施的维护和更新。这套系统的核心是一套智能化的传感器网络,它能够自动地对岛上的市政设施进行评估。对市政设施的维护是需要一定成本的,而年久失修的市政设施也可能给岛上的居民造成损失。为了能够平衡成本和收益,信息中心研发了一款数学模型,描述这些变量和损益之间的复杂数学关系。要想得到最优化的成本,就要依靠梯度下降算法来求解。

梯度下降算法中,求解函数在一点处对某一自变量的偏导数是十分重要的。小 C 负责实现这个功能,但是具体的技术实现,他还是一头雾水,希望你来帮助他完成这个任务。

问题描述

设被求算的函数 u=f(x1,x2,…,xn),本题目要求你求出 u 对 xi 在 (a1,a2,…,an) 处的偏导数 ∂u∂xi(a1,a2,…,an)。

求算多元函数在一点处对某一自变量的偏导数的方法是:将函数的该自变量视为单一自变量,其余自变量认为是常数,运用一元函数求导的方法求出该偏导数表达式,再代入被求算的点的坐标即可。

例如,要求算 u=x1⋅x1⋅x2 对 x1 在 (1,2) 处的偏导数,可以将 x2 视为常数,依次应用求导公式。先应用乘法的求导公式:(x1⋅(x1⋅x2))′=x1′(x1⋅x2)+x1(x1⋅x2)′;再应用常数与变量相乘的求导公式,得到 x1′⋅x1⋅x2+x1⋅x2⋅x1′;最后应用公式 x′=1 得到 1⋅x1⋅x2+x1⋅x2⋅1。整理得 ∂u∂x1=2x2⋅x1。再代入 (1,2) 得到 ∂u∂x1(1,2)=4。

常见的求导公式有:

  • (是常数)c′=0 (c是常数)
  • x′=1
  • (u+v)′=u′+v′
  • (是常数)(cu)′=cu′ (c是常数)
  • (u−v)′=u′−v′
  • (uv)′=u′v+uv′

本题目中,你需要求解的函数 f 仅由常数、自变量和它们的加法、减法、乘法组成。且为程序识读方便,函数表达式已经被整理为逆波兰式(后缀表达式)的形式。例如,x1⋅x1⋅x2 的逆波兰式为 x1 x1 * x2 *。逆波兰式即为表达式树的后序遍历的结果。若要从逆波兰式还原原始计算算式,可以按照这一方法进行:假设存在一个空栈 S,依次读取逆波兰式的每一个元素,若读取到的是变量或常量,则将其压入 S 中;若读取到的是计算符号,则从 S 中取出两个元素,进行相应运算,再将结果压入 S 中。最后,若 S 中存在唯一的元素,则该表达式合法,其值即为该元素的值。例如对于逆波兰式 x1 x1 * x2 *,按上述方法读取,栈 S 的变化情况依次为(左侧是栈底,右侧是栈顶):

  1. x1;
  2. x1,x1;
  3. (x1⋅x1);
  4. (x1⋅x1),x2;
  5. ((x1⋅x1)⋅x2)。

输入格式

从标准输入读入数据。

输入的第一行是由空格分隔的两个正整数 n、m,分别表示要求解函数中所含自变量的个数和要求解的偏导数的个数。

输入的第二行是一个逆波兰式,表示要求解的函数 f。其中,每个元素用一个空格分隔,每个元素可能是:

  • 一个自变量 xi,用字符 x 后接一个正整数表示,表示第 i 个自变量,其中 i=1,2,…,n。例如,x1 表示第一个自变量 x1。
  • 一个整常数,用十进制整数表示,其值在 −105 到 105 之间。
  • 一个运算符,用 + 表示加法,- 表示减法,* 表示乘法。

输入的第三行到第 m+2 行,每行有 n+1 个用空格分隔的整数。其中第一个整数是要求偏导数的自变量的编号 i=1,2,…,n,随后的整数是要求算的点的坐标 a1,a2,…,an。
输入数据保证,对于所有的 i=1,2,…,n,ai 都在 −105 到 105 之间。

输出格式

输出到标准输出中。

输出 m 行,每行一个整数,表示对应的偏导数对 109+7 取模的结果。即若结果为 y,输出为 k,则保证存在整数 t,满足 y=k+t⋅(109+7) 且 0≤k<109+7。

样例 1 输入

2 2
x1 x1 x1 * x2 + *
1 2 3
2 3 4

样例 1 输出

15
3

样例 1 说明

读取逆波兰式,可得被求导的式子是:u=x1⋅(x1⋅x1+x2),即 u=x13+x1x2。

对 x1 求偏导得 ∂u∂x1=3x12+x2。代入 (2,3) 得到 ∂u∂x1(2,3)=15。

对 x2 求偏导得 ∂u∂x2=x1。代入 (3,4) 得到 ∂u∂x2(3,4)=3。

样例 2 输入

3 5
x2 x2 * x2 * 0 + -100000 -100000 * x2 * -
3 100000 100000 100000
2 0 0 0
2 0 -1 0
2 0 1 0
2 0 100000 0

样例 2 输出

0
70
73
73
999999867

样例 2 说明

读取逆波兰式,可得被求导的式子是:u=x2⋅x2⋅x2+0−(−105)⋅(−105)⋅x2,即 u=x23−1010x2。

因为 u 中实际上不含 x1 和 x3,对这两者求偏导结果均为 0。

对 x2 求偏导得 ∂u∂x2=3x22−1010。

评测用例规模与约定

测试点nm表达式的性质
1, 2=1≤100仅含有 1 个元素
3, 4=1≤100仅含有一个运算符
5, 6≤10≤100含有不超过 120 个元素,且不含乘法
7, 8≤10≤100含有不超过 120 个元素
9, 10≤100≤100含有不超过 120 个元素

提示

C++ 中可以使用 std::getline(std::cin, str) 读入字符串直到行尾。

当计算整数 n 对 M 的模时,若 n 为负数,需要注意将结果调整至区间 [0,M) 内。

真题来源:梯度求解

感兴趣的同学可以如此编码进去进行练习提交

 c++满分题解:

#include <bits/stdc++.h>
using namespace std;const int mo = 1e9+7;
#define CONST -1
#define VAR -2
#define OP -3int main(){ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);string s;int n, m;cin >> n >> m;getline(cin, s); // '\n'getline(cin, s);istringstream qwq(s);vector<int> l;vector<int> r;vector<int> info;vector<int> kind;stack<int> id;int node_id = 0;while(getline(qwq, s, ' ')){if (s.size() == 1 && (s[0] == '+' || s[0] == '*' || s[0] == '-')){int rson = id.top();id.pop();int lson = id.top();id.pop();l.push_back(lson);r.push_back(rson);info.push_back(s[0]);kind.push_back(OP);id.push(node_id);++ node_id;}else if (s[0] == 'x'){int x = stoi(s.substr(1));-- x;l.push_back(-1);r.push_back(-1);info.push_back(x);kind.push_back(VAR);id.push(node_id);++ node_id;}else{int x = stoi(s);l.push_back(-1);r.push_back(-1);info.push_back(x);kind.push_back(CONST);id.push(node_id);++ node_id;}}int root = id.top();vector<int> a(n);function<array<int, 2>(int, int)> solve = [&](int u, int x){if (kind[u] == VAR){return array<int, 2>{a[info[u]], (info[u] == x)};}else if (kind[u] == CONST){return array<int, 2>{info[u], 0};}else{auto lans = solve(l[u], x), rans = solve(r[u], x);int sum = 0, dsum = 0;if (info[u] == '+'){sum = lans[0] + rans[0];dsum = lans[1] + rans[1];if (sum >= mo)  sum -= mo;if (dsum >= mo) dsum -= mo;}else if (info[u] == '-'){sum = lans[0] - rans[0];dsum = lans[1] - rans[1];if (sum >= mo)  sum -= mo;if (dsum >= mo) dsum -= mo;}else{sum = 1ll * lans[0] * rans[0] % mo;dsum = (1ll * lans[0] * rans[1] % mo + 1ll * lans[1] * rans[0] % mo);if (dsum >= mo) dsum -= mo;}if (sum < 0)sum += mo;if (dsum < 0)dsum += mo;return array<int, 2>{sum, dsum};}};for(int i = 0; i < m; ++ i){int x;cin >> x;-- x;for(auto &i : a)cin >> i;cout << solve(root, x)[1] << '\n';}return 0;
}

 运行结果:

这篇关于CCF-CSP真题《202309-3 梯度求解》思路+python,c++满分题解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/352817

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学