Azure 机器学习 - 使用 ONNX 对来自 AutoML 的计算机视觉模型进行预测

本文主要是介绍Azure 机器学习 - 使用 ONNX 对来自 AutoML 的计算机视觉模型进行预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、环境准备
  • 二、下载 ONNX 模型文件
    • 2.1 Azure 机器学习工作室
    • 2.2 Azure 机器学习 Python SDK
    • 2.3 生成模型进行批量评分
      • 多类图像分类
  • 三、加载标签和 ONNX 模型文件
  • 四、获取 ONNX 模型的预期输入和输出详细信息
    • ONNX 模型的预期输入和输出格式
      • 多类图像分类
    • 多类图像分类输入格式
    • 多类图像分类输出格式
  • 五、预处理
    • 多类图像分类
    • 多类图像分类 无 PyTorch
    • 多类图像分类 有 PyTorch
    • 使用 ONNX 运行时进行推理
      • 多类图像分类
    • 后期处理
      • 多类图像分类无 PyTorch
      • 多类图像分类有 PyTorch
    • 将预测结果可视化
      • 多类图像分类

本文介绍如何使用 Open Neural Network Exchange (ONNX) 对从 Azure 机器学习中的自动机器学习 (AutoML) 生成的计算机视觉模型进行预测。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

file

一、环境准备

  • 对任何受支持的图像任务(分类、对象检测或实例分段)获取经 AutoML 训练的计算机视觉模型。 详细了解 AutoML 对计算机视觉任务的支持。

  • 安装 onnxruntime 包。 本文中的方法已使用 1.3.0-1.8.0 版本进行了测试。


二、下载 ONNX 模型文件

可以使用 Azure 机器学习工作室 UI 或 Azure 机器学习 Python SDK 从 AutoML 运行下载 ONNX 模型文件。 建议使用具有实验名称和父运行 ID 的 SDK 进行下载。

2.1 Azure 机器学习工作室

在 Azure 机器学习工作室中,通过训练笔记本中生成的指向实验的超链接进入实验,或选择“资产”下的“实验”选项卡中实验名称进入实验 。 然后,选择最佳子运行。

在最佳子运行中,转到“输出+日志”>“train_artifacts” 。 使用“下载”按钮手动下载以下文件:

  • labels.json:包含训练数据集中所有类或标签的文件。
  • model.onnx:ONNX 格式的模型。

file

将下载的模型文件保存到目录。 本文中的示例使用 ./automl_models 目录。

2.2 Azure 机器学习 Python SDK

在 SDK 中,可以使用实验名称和父运行 ID 选择最佳子运行(按主要指标)。 然后,可以下载 labels.json 和 model.onnx 文件 。

以下代码根据相关的主要指标返回最佳子运行。

from azureml.train.automl.run import AutoMLRun# Select the best child run
run_id = '' # Specify the run ID
automl_image_run = AutoMLRun(experiment=experiment, run_id=run_id)
best_child_run = automl_image_run.get_best_child()

下载 labels.json 文件,其中包含训练数据集中的所有类和标签。

labels_file = 'automl_models/labels.json'
best_child_run.download_file(name='train_artifacts/labels.json', output_file_path=labels_file)

下载 model.onnx 文件。

onnx_model_path = 'automl_models/model.onnx'
best_child_run.download_file(name='train_artifacts/model.onnx', output_file_path=onnx_model_path)

2.3 生成模型进行批量评分

默认情况下,AutoML for Images 支持分类的批量评分。 但是对象检测和实例分段模型不支持批量推理。 若要对于对象检测和实例分段进行批量推断,请使用以下过程为所需的批大小生成 ONNX 模型。 为特定批大小生成的模型不能用于其他批大小。

from azureml.core.script_run_config import ScriptRunConfig
from azureml.train.automl.run import AutoMLRun
from azureml.core.workspace import Workspace
from azureml.core import Experiment# specify experiment name
experiment_name = ''
# specify workspace parameters
subscription_id = ''
resource_group = ''
workspace_name = ''
# load the workspace and compute target
ws = ''
compute_target = ''
experiment = Experiment(ws, name=experiment_name)# specify the run id of the automl run
run_id = ''
automl_image_run = AutoMLRun(experiment=experiment, run_id=run_id)
best_child_run = automl_image_run.get_best_child()

使用以下模型特定参数提交脚本。 有关参数的更多详细信息,请参阅模型特定超参数;有关支持的对象检测模型名称,请参阅支持的模型算法部分。

若要获取创建批处理评分模型所需的参数值,请参阅 AutoML 训练运行 outputs 文件夹下生成的评分脚本。 使用最佳子运行评分文件内模型设置变量中提供的超参数值。

多类图像分类

对于多类图像分类,为最佳子运行生成的 ONNX 模型默认支持批量评分。 因此,此任务类型不需要模型特定的参数。

三、加载标签和 ONNX 模型文件

以下代码片段加载 labels.json,其中类名已排序。 也就是说,如果 ONNX 模型预测标签 ID 为 2,则它对应于 labels.json 文件中的第三个索引给出的标签名称。

import json
import onnxruntimelabels_file = "automl_models/labels.json"
with open(labels_file) as f:classes = json.load(f)
print(classes)
try:session = onnxruntime.InferenceSession(onnx_model_path)print("ONNX model loaded...")
except Exception as e: print("Error loading ONNX file: ",str(e))

四、获取 ONNX 模型的预期输入和输出详细信息

使用模型时,务必了解一些特定于模型和特定于任务的详细信息。 这些详细信息包括输入数量和输出数量、用于预处理图像的预期输入形状或格式,以及输出形状,确保你了解特定于模型或特定于任务的输出。

sess_input = session.get_inputs()
sess_output = session.get_outputs()
print(f"No. of inputs : {len(sess_input)}, No. of outputs : {len(sess_output)}")for idx, input_ in enumerate(range(len(sess_input))):input_name = sess_input[input_].nameinput_shape = sess_input[input_].shapeinput_type = sess_input[input_].typeprint(f"{idx} Input name : { input_name }, Input shape : {input_shape}, \Input type  : {input_type}")  for idx, output in enumerate(range(len(sess_output))):output_name = sess_output[output].nameoutput_shape = sess_output[output].shapeoutput_type = sess_output[output].typeprint(f" {idx} Output name : {output_name}, Output shape : {output_shape}, \Output type  : {output_type}") 

ONNX 模型的预期输入和输出格式

每个 ONNX 模型都有一组预定义的输入和输出格式。

多类图像分类

此示例应用具有 134 个图像和 4 个类/标签的 fridgeObjects 数据集上训练的模型,以说明 ONNX 模型推理。 有关训练图像分类任务的详细信息,请参阅多类图像分类笔记本。

多类图像分类输入格式

输入是经过预处理的图像。

输入名称输入形状输入类型描述
input1(batch_size, num_channels, height, width)ndarray(float)输入是经过预处理的图像,形状为 (1, 3, 224, 224),批大小为 1,高度和宽度为 224。 这些数字对应于训练示例中 crop_size 所用的值。

多类图像分类输出格式

输出是所有类/标签的 logit 数组。

输出名称输出形状输出类型描述
output1(batch_size, num_classes)ndarray(float)模型返回 logit(没有 softmax)。 例如,对于批大小为 1 和 4 的类,它返回 (1, 4)

此示例使用具有 128 个图像和 4 个类/标签的多标签 fridgeObjects 数据集上训练的模型,以说明 ONNX 模型推理。 有关多标签图像分类的模型训练的详细信息,请参阅多标签图像分类笔记本。

五、预处理

多类图像分类

执行以下预处理步骤,以实现 ONNX 模型推理:

  1. 将图像转换为 RGB。
  2. 将图像大小调整为 valid_resize_sizevalid_resize_size 值,这些值对应于训练期间验证数据集转换时使用的值。 valid_resize_size 的默认值为 256。
  3. 将图像中心裁剪为 height_onnx_crop_sizewidth_onnx_crop_size。 它与 valid_crop_size 对应,默认值为 224。
  4. HxWxC 更改为 CxHxW
  5. 转换为 float 型。
  6. 使用 ImageNet 的 mean = [0.485, 0.456, 0.406]std = [0.229, 0.224, 0.225] 进行规范化。

如果在训练期间为超参数valid_resize_sizevalid_crop_size 选择了不同的值,则应使用这些值。

获取 ONNX 模型所需的输入形状。

batch, channel, height_onnx_crop_size, width_onnx_crop_size = session.get_inputs()[0].shape
batch, channel, height_onnx_crop_size, width_onnx_crop_size

多类图像分类 无 PyTorch

import glob
import numpy as np
from PIL import Imagedef preprocess(image, resize_size, crop_size_onnx):"""Perform pre-processing on raw input image:param image: raw input image:type image: PIL image:param resize_size: value to resize the image:type image: Int:param crop_size_onnx: expected height of an input image in onnx model:type crop_size_onnx: Int:return: pre-processed image in numpy format:rtype: ndarray 1xCxHxW"""image = image.convert('RGB')# resizeimage = image.resize((resize_size, resize_size))#  center  cropleft = (resize_size - crop_size_onnx)/2top = (resize_size - crop_size_onnx)/2right = (resize_size + crop_size_onnx)/2bottom = (resize_size + crop_size_onnx)/2image = image.crop((left, top, right, bottom))np_image = np.array(image)# HWC -> CHWnp_image = np_image.transpose(2, 0, 1) # CxHxW# normalize the imagemean_vec = np.array([0.485, 0.456, 0.406])std_vec = np.array([0.229, 0.224, 0.225])norm_img_data = np.zeros(np_image.shape).astype('float32')for i in range(np_image.shape[0]):norm_img_data[i,:,:] = (np_image[i,:,:]/255 - mean_vec[i])/std_vec[i]np_image = np.expand_dims(norm_img_data, axis=0) # 1xCxHxWreturn np_image# following code loads only batch_size number of images for demonstrating ONNX inference
# make sure that the data directory has at least batch_size number of imagestest_images_path = "automl_models_multi_cls/test_images_dir/*" # replace with path to images
# Select batch size needed
batch_size = 8
# you can modify resize_size based on your trained model
resize_size = 256
# height and width will be the same for classification
crop_size_onnx = height_onnx_crop_size image_files = glob.glob(test_images_path)
img_processed_list = []
for i in range(batch_size):img = Image.open(image_files[i])img_processed_list.append(preprocess(img, resize_size, crop_size_onnx))if len(img_processed_list) > 1:img_data = np.concatenate(img_processed_list)
elif len(img_processed_list) == 1:img_data = img_processed_list[0]
else:img_data = Noneassert batch_size == img_data.shape[0]

多类图像分类 有 PyTorch

import glob
import torch
import numpy as np
from PIL import Image
from torchvision import transformsdef _make_3d_tensor(x) -> torch.Tensor:"""This function is for images that have less channels.:param x: input tensor:type x: torch.Tensor:return: return a tensor with the correct number of channels:rtype: torch.Tensor"""return x if x.shape[0] == 3 else x.expand((3, x.shape[1], x.shape[2]))def preprocess(image, resize_size, crop_size_onnx):transform = transforms.Compose([transforms.Resize(resize_size),transforms.CenterCrop(crop_size_onnx),transforms.ToTensor(),transforms.Lambda(_make_3d_tensor),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])img_data = transform(image)img_data = img_data.numpy()img_data = np.expand_dims(img_data, axis=0)return img_data# following code loads only batch_size number of images for demonstrating ONNX inference
# make sure that the data directory has at least batch_size number of imagestest_images_path = "automl_models_multi_cls/test_images_dir/*" # replace with path to images
# Select batch size needed
batch_size = 8
# you can modify resize_size based on your trained model
resize_size = 256
# height and width will be the same for classification
crop_size_onnx = height_onnx_crop_size image_files = glob.glob(test_images_path)
img_processed_list = []
for i in range(batch_size):img = Image.open(image_files[i])img_processed_list.append(preprocess(img, resize_size, crop_size_onnx))if len(img_processed_list) > 1:img_data = np.concatenate(img_processed_list)
elif len(img_processed_list) == 1:img_data = img_processed_list[0]
else:img_data = Noneassert batch_size == img_data.shape[0]

使用 ONNX 运行时进行推理

使用 ONNX 运行时进行推理因各个计算机视觉任务而异。

多类图像分类


def get_predictions_from_ONNX(onnx_session, img_data):"""Perform predictions with ONNX runtime:param onnx_session: onnx model session:type onnx_session: class InferenceSession:param img_data: pre-processed numpy image:type img_data: ndarray with shape 1xCxHxW:return: scores with shapes(1, No. of classes in training dataset) :rtype: numpy array"""sess_input = onnx_session.get_inputs()sess_output = onnx_session.get_outputs()print(f"No. of inputs : {len(sess_input)}, No. of outputs : {len(sess_output)}")    # predict with ONNX Runtimeoutput_names = [ output.name for output in sess_output]scores = onnx_session.run(output_names=output_names,\input_feed={sess_input[0].name: img_data})return scores[0]scores = get_predictions_from_ONNX(session, img_data)

后期处理

多类图像分类无 PyTorch

softmax() 应用预测值,以获取每个类的分类置信度分数(概率)。 然后,将预测出概率最高的类。

def softmax(x):e_x = np.exp(x - np.max(x, axis=1, keepdims=True))return e_x / np.sum(e_x, axis=1, keepdims=True)conf_scores = softmax(scores)
class_preds = np.argmax(conf_scores, axis=1)
print("predicted classes:", ([(class_idx, classes[class_idx]) for class_idx in class_preds]))

多类图像分类有 PyTorch

conf_scores = torch.nn.functional.softmax(torch.from_numpy(scores), dim=1)
class_preds = torch.argmax(conf_scores, dim=1)
print("predicted classes:", ([(class_idx.item(), classes[class_idx]) for class_idx in class_preds]))

该步骤不同于多类分类。 需要将 sigmoid 应用于 logit(ONNX 输出),以获取多标签图像分类的置信度分数。

将预测结果可视化

多类图像分类

使用标签将输入图像可视化

import matplotlib.image as mpimg
import matplotlib.pyplot as plt
%matplotlib inlinesample_image_index = 0 # change this for an image of interest from image_files list
IMAGE_SIZE = (18, 12)
plt.figure(figsize=IMAGE_SIZE)
img_np = mpimg.imread(image_files[sample_image_index])img = Image.fromarray(img_np.astype('uint8'), 'RGB')
x, y = img.sizefig,ax = plt.subplots(1, figsize=(15, 15))
# Display the image
ax.imshow(img_np)label = class_preds[sample_image_index]
if torch.is_tensor(label):label = label.item()conf_score = conf_scores[sample_image_index]
if torch.is_tensor(conf_score):conf_score = np.max(conf_score.tolist())
else:conf_score = np.max(conf_score)display_text = '{} ({})'.format(label, round(conf_score, 3))
print(display_text)color = 'red'
plt.text(30, 30, display_text, color=color, fontsize=30)plt.show()

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

这篇关于Azure 机器学习 - 使用 ONNX 对来自 AutoML 的计算机视觉模型进行预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/352803

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学