【源码】koa-compose洋葱模型原理解析---函数多层调用怎么写更优雅?

本文主要是介绍【源码】koa-compose洋葱模型原理解析---函数多层调用怎么写更优雅?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

资料准备
  • 【若川】koa 洋葱模型实现:https://juejin.cn/post/7005375860509245471
  • 【函数式编程指北】:https://llh911001.gitbooks.io/mostly-adequate-guide-chinese/content/ch5.html
  • https://www.yuque.com/docs/share/0268760e-60bf-4278-871e-c1e83a68be7a
学习目标
  • 全程尝试调试并且记录
  • 知道什么是koa洋葱模型
源码解析
git clone https://github.com/lxchuan12/koa-compose-analysis.git
cd koa-compose/compose
npm i
compose/index.js
'use strict'/*** Expose compositor.* 导出 compose*/module.exports = compose/*** Compose `middleware` returning* a fully valid middleware comprised* of all those which are passed.* @param {Array} middleware* @return {Function}* @api public** 接收一个 是中间件 这个参数是数组, 并且每一项是函数* 返回一个函数 接收`content` 和 `next`俩参数,最后返回一个promise*/function compose (middleware) {// 校验参数如果不是数组,抛出错误if (!Array.isArray(middleware)) throw new TypeError('Middleware stack must be an array!')// 遍历这个参数数组for (const fn of middleware) {// 校验数组中的每一项是不是函数if (typeof fn !== 'function') throw new TypeError('Middleware must be composed of functions!')}/*** @param {Object} context* @return {Promise}* @api public* 返回一个函数 接收`content` 和 `next`俩参数,最后返回一个promise*/return function (context, next) {// last called middleware #// 默认执行 `dispatch(0)`let index = -1return dispatch(0)function dispatch (i) {// 一个函数不能多次调用// 第一次 i 为 0 index 为 -1 可以继续走下去 此时index 为 0;// 那么在走一遍 i此时还是0 index 也为0 i == index 抛出错误if (i <= index) return Promise.reject(new Error('next() called multiple times'))index = i// 拿出数组中的每一项(获取中间件函数)let fn = middleware[i]// `next`是`undefined` 当相等的时候:`fn` 就是`undefined`// 相等的时候相当于已经把`middleware`这个数组中最后一个已经拿出来了if (i === middleware.length) fn = next// 所以直接返回`promise` 的 `resolve`if (!fn) return Promise.resolve()/*** 阅读到此时不太理解 `fn(context, dispatch.bind(null, i + 1))`* 逐个解读:* + `bind` 函数返回一个新函数* + 参数1代表 `this`,如果函数不需要使用`this`,会写成`null`* + 参数2就是要传的数据* 在此处`i + 1` 对应的代码应该是 `let fn = middleware[i]` 为了获取`middleware`中下一个中间件函数* 那么是否猜测可以理解为下一个 即`next`,`bind` 返回的是一个新函数* 那么此时 是否可以理解为:* 假设:中间件数组为[fn0, fn1, fn2]; (fn0 就是中间件【传入的参数数组】中的第一个函数)* ```* fn0(context, next) {*  return Promise.resolve(fn1(context,next) {*    return Promise.resolve(fn2(content, next) {*        //......一直到 `!fn`*        return Promise.resolve();*        // 此时也不再走 `next`函数*    })*  })* }* ```* 但是一切是靠字面意思猜测,待调试的时候见真知* 此时有没有发现,分析完竟然吧所有的中间件都串起来了,此时可以理解为这就是 洋葱模型*/try {return Promise.resolve(fn(context, dispatch.bind(null, i + 1)))} catch (err) {return Promise.reject(err)}}}
}
调试前去了解一下含义吧

在这里插入图片描述

什么是洋葱🧅模型

假如你手里有一支牙签,横向穿过一个洋葱,是不是会层层穿透?从第一层进去、到第二层、第三次…然后到中间层后,再层层穿透的出,从第三层出、第二层、第一层…
这就是洋葱模型,就如分析的上方代码一样将中间件一个个获取出来。

初步了解了含义,那么就调试来感受吧
  1. 找到 koa-compose-analysis/compose/test/test.js
    在这里插入图片描述
    在这里插入图片描述
  • 1.继续(F5): 点击后代码会直接执行到下一个断点所在位置,如果没有下一个断点,则认为本次代码执行完成。
  • 2.单步跳过(F10):点击后会跳到当前代码下一行继续执行,不会进入到函数内部。
  • 3.单步调试(F11):点击后进入到当前函数的内部调试,比如在 compose 这一行中执行单步调试,会进入到 compose 函数内部进行调试。
  • 4.单步跳出(Shift + F11):点击后跳出当前调试的函数,与单步调试对应。
  • 5.重启(Ctrl + Shift + F5):顾名思义。
  • 6.断开链接(Shift + F5):顾名思义。
  1. 45行处调用了compose 在这里插入图片描述
  2. 进入compose这个函数中。可以看到,传入的参数 , 与上方看的源码的意思一样,继续往下看~
  • compose函数的流程如下:
  • 1.验证middleware参数是否是一个数组
  • 2.验证middleware参数里面的每一个元素是否为一个函数
  • 3.返回一个函数,接受两个参数,一个context, 一个next
    在这里插入图片描述
  1. 走到从此判断,返回了一个函数在这里插入图片描述5. 接着点击继续 就跳到了此处,那么重新进入此函数看看接下来是怎么运作的~在这里插入图片描述
  2. 此时进入了dispatchdispatch主要干的事情就是:
  • 1.判断函数不能多次调用,
  • 2.更新 index的值
  • 3.拿出中间件的每一项值,赋值给fn
  • 4.直到判断出fnundeifined ,返回一个resolvepromise
  • 5.否则调用fn, context值为最初的context, nextdispatch.bind(null, i + 1),也就是继续调用dispath方法,参数为i+1
  • 6.这里面注意一下,给bind传第一参数null, 函数内的this会指向默认宿主对象。在这里插入图片描述
  1. 当i=0时,fn指向middleware数组中的第1个元素在这里插入图片描述
    继续往下走,就在截图此处打一个断点
    在这里插入图片描述
    当i=1时,fn指向middleware数组中的第2个元素
    在这里插入图片描述
    当i=2的时候的情况:
    在这里插入图片描述
    当i=3的时候,fn为undefined的情况:
    在这里插入图片描述
    再来看看这块:
    在这里插入图片描述

这块的代码输出是[1,2,3,4,5,6],
为什么呢?
答案就是:加载完所有中间件后,输出[1,2,3],调用next()后执行完当前中间件,然后把执行权交给上一层中间件。借用一张非常经典的图。
在这里插入图片描述

为了方便理解回忆在看一个 koademo

const Koa = require('koa');const app = new Koa();
const PORT = 3000;// #1
app.use(async (ctx, next)=>{console.log(1)await next();console.log(1)
});
// #2
app.use(async (ctx, next) => {console.log(2)await next();console.log(2)
})app.use(async (ctx, next) => {console.log(3)
})app.listen(PORT);
console.log(`http://localhost:${PORT}`);
1
2
3
2
1
测试技巧
  • 在it后面加上一个only来只执行这一个测试

it.only('should work', async () => {})

  • 在it后面加上一个skip来跳过这个测试

it.skip('should work', async () => {})

  • 继续(F5): 点击后代码会直接执行到下一个断点所在位置,如果没有下一个断点,则认为本次代码执行完成。
  • 单步跳过(F10):点击后会跳到当前代码下一行继续执行,不会进入到函数内部。
  • 单步调试(F11):点击后进入到当前函数的内部调试,比如在 compose 这一行中执行单步调试,会进入到 compose 函数内部进行调试。
  • 单步跳出(Shift + F11):点击后跳出当前调试的函数,与单步调试对应。
  • 重启(Ctrl + Shift + F5):顾名思义。
  • 断开链接(Shift + F5):顾名思义。
现实中函数多层调用时的处理方法
  • 知识点:在函数式编程当中有一个很重要的概念就是函数组合, 实际上就是把处理数据的函数像管道一样连接起来, 然后让数据穿过管道得到最终的结果。

多层函数嵌套的运行结果,即把前一个函数的运行结果赋值给后一个函数。但是如果需要嵌套多层函数,那这种类似于f(g(h(x)))的写法可读性太差,我们考虑能不能写成(f, g, h)(x)这种简单直观的形式,于是compose()函数就正好帮助我们实现。compose的缺点:不能直观的看到参数

function getId(id) {// 一些处理// console.log(id, 'id1');return id
}function getData(id) {// 一些处理// console.log(id, 'id2');let data = id * 10;return data
}function formatData(data) {// 一些处理// console.log(data, 'data')let formatdata = data / 2;// console.log(formatdata, 'formatdata')return formatdata
}
const result = formatData(getData(getId(5)))
console.log(result)
//用compose 思想
const arr = [getId, getData, formatData];
const result = compose(arr)(3);
console.log(result, 'result') // 15,result
简易
function compose(funcs) {if (!Array.isArray(funcs)) throw new TypeError('Middleware stack must be an array!')// 遍历这个参数数组for (const fn of funcs) {// 校验数组中的每一项是不是函数if (typeof fn !== 'function') throw new TypeError('Middleware must be composed of functions!')}return function (...args) {//=>args:第一次调用函数传递的参数集合let len = funcs.length;if (len === 0) {//=>一个函数都不需要执行,直接返回参数argsreturn args;}if (len === 1) {//=>只需要执行第一个函数,把函数执行,把其结果返回即可return funcs[0](...args);}return funcs.reduce((x, y) => {// console.log('--x--', x)// console.log('--y--', y)return typeof x === "function" ? y(x(...args)) : y(x)});};
}
总结归纳
  • 本次很完整的进行了调试,以前都是console,现在第一反应就是调试。
  • 通过尝试写例子,对这次的知识点了解更深
  • 写笔记跟看过就是俩回事啊,在我这里,不写真的等于不会
  • 我写例子调试的网站jsRun
  • 坚持就是胜利!

这篇关于【源码】koa-compose洋葱模型原理解析---函数多层调用怎么写更优雅?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/351409

相关文章

Agent开发核心技术解析以及现代Agent架构设计

《Agent开发核心技术解析以及现代Agent架构设计》在人工智能领域,Agent并非一个全新的概念,但在大模型时代,它被赋予了全新的生命力,简单来说,Agent是一个能够自主感知环境、理解任务、制定... 目录一、回归本源:到底什么是Agent?二、核心链路拆解:Agent的"大脑"与"四肢"1. 规划模

MySQL字符串转数值的方法全解析

《MySQL字符串转数值的方法全解析》在MySQL开发中,字符串与数值的转换是高频操作,本文从隐式转换原理、显式转换方法、典型场景案例、风险防控四个维度系统梳理,助您精准掌握这一核心技能,需要的朋友可... 目录一、隐式转换:自动但需警惕的&ld编程quo;双刃剑”二、显式转换:三大核心方法详解三、典型场景

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

Spring IOC核心原理详解与运用实战教程

《SpringIOC核心原理详解与运用实战教程》本文详细解析了SpringIOC容器的核心原理,包括BeanFactory体系、依赖注入机制、循环依赖解决和三级缓存机制,同时,介绍了SpringBo... 目录1. Spring IOC核心原理深度解析1.1 BeanFactory体系与内部结构1.1.1

pandas使用apply函数给表格同时添加多列

《pandas使用apply函数给表格同时添加多列》本文介绍了利用Pandas的apply函数在DataFrame中同时添加多列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、Pandas使用apply函数给表格同时添加多列二、应用示例一、Pandas使用apply函

在C#中调用Windows防火墙界面的常见方式

《在C#中调用Windows防火墙界面的常见方式》在C#中调用Windows防火墙界面(基础设置或高级安全设置),可以使用进程启动(Process.Start)或Win32API来实现,所以本文给大家... 目录引言1. 直接启动防火墙界面(1) 打开基本防火墙设置(firewall.cpl)(2) 打开高

C++ 多态性实战之何时使用 virtual 和 override的问题解析

《C++多态性实战之何时使用virtual和override的问题解析》在面向对象编程中,多态是一个核心概念,很多开发者在遇到override编译错误时,不清楚是否需要将基类函数声明为virt... 目录C++ 多态性实战:何时使用 virtual 和 override?引言问题场景判断是否需要多态的三个关

Python中Namespace()函数详解

《Python中Namespace()函数详解》Namespace是argparse模块提供的一个类,用于创建命名空间对象,它允许通过点操作符访问数据,比字典更易读,在深度学习项目中常用于加载配置、命... 目录1. 为什么使用 Namespace?2. Namespace 的本质是什么?3. Namesp