【2023 · CANN训练营第一季】进阶班 应用开发:模型转换

2023-11-05 16:50

本文主要是介绍【2023 · CANN训练营第一季】进阶班 应用开发:模型转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 AIPP

AIPP (Artificial Intelligence Pre-Processing)人工智能预处理,在AI Corfe上完成数据预处理。

1.1 静态AIPP

  1. 构造AIPP配置文件*.cfg
  2. 使能静态AIPP,将其配置参数保存在模型文件中。
atc --framework=3--soc_version=S[soc_version)
--model= SHOME/module/resnet50 tensorfiow.pb
--insert_op conf= SHOME/modulefinsert op.cfg
--output= $HOME/module/outcf resnet50
  1. 调用AscendCL接口加载模型,执行推理。

1.2 动态AIPP

  1. 构造AIPP配置文件*.cfg。aipp_op
  2. 使能动态AIPP。
atc --framework=3--soc version=$(soc_version)
--model= SHOME/module/resnet50 tensorflow.pb- 
--insert op conf-$HOME/module/insert op.cfg
--output=SHOME/module/out/tf resnet50
  1. 调用AscendCL接口加载模型,设置AIPP参数后,再执行推理。
aclmdIAIPP *aippDynamicSet = aclmdlCreateAIPP(batchNumber);aclmdlSetAIPPSrclmageSizeaippDynamicSet,250, 250);
acImdlSetAIPPInputFormat(aippDynamicSet,ACL_YUV420SP_U8):aclmdlSetAIPPCscParams(aippDynamicSet,1, 256,0,359,256,-88,-183,256,454,0,0.0,0,0,128,128);
aclmdlSetAIPPCropParams(aippDynamicSet,1,2.2,224,224,0);aclmdISetInputAIPP(modelld, inputindex,aippDynamicSet);acImdIDestroyAIPP(aippDynamicSet);

2 AIPP-Crop/Padding

AIPP改变图片尺寸需要遵守如下图中的顺序,即先Crop再Padding,每个操作仅能执行一次。

  • 场景功能:输入到AIPP中的图片尺寸为srclmageSizeW, srclmageSizeH;模型要求的图片尺寸为dstlmageSizeW.dstlmageSizeH。
  • Crop操作:在原图中距离左上角宽load_start_pos_w,高load_start_pos_h距离的点裁剪出宽为crop_size_w,高为crop_size_h大小的图片。
  • Paste操作:指明在裁剪后的图像四周padding的尺寸,即left_padding_size.right_padding_size.top_padding_size和bottom_padding_size。而经过图像尺寸改变之后最终图片大小,需要跟模型文件输入的图像大小即模型要求的图片尺寸dstlmagesizew. dstlmageSizeH相等。
    其中,对于YUV420SP_u8图片类型,load_start_pos_w. load_start_pos_h参数
    实际上,大多图像缩放或裁剪的工作都在样例中的输入预处理中做过了,如使用opencv的resize函数进行缩放等。初步学习的过程中,仅需要了解AIPP具备这样的功能即可。

crop: true #抠图开关,用于改变图片尺寸
load_start_pos_h: o #抠图起始位置水平、垂直方向坐标
load_start_pos_w: o

开启Crop且没有配置padding, crop_size_w和crop_size_h才能取值为0或不配置。

此时抠图大小(crop_size[W|H])的宽和高取值来自模型文件–
input_shape中的宽和高,并且–input_shape中的宽和高取值范围为[1,4096]。

换言之,通过这样的简单配置,就可以自动将输入的图片裁剪成模型要求的图片天小,避免输入预处理后的图片与模型要求的图片大小不一致的问题。但可能会带来丢失一部分原始图片而导致的精度损失问题。

3 AIPP-RGB说明

3.1 大小格式说明

3.2 OpenCV传统流程处理

4. AIPP色域转换

在执行RGB->YUV,或者RGB->BGR等色域转换时,就可以直接使用AIPP,通过硬件能力快速完成色域转换。

csc_switch : true
#色域转换开关
matrix_rOc0 : 256
#色域转换系数,用户无需修改
matrix_rOc1 : 0
matrix_rOc2 : 359
matrix_r1c0 : 256
matrix_r1c1 : -88
matrix_r1c2 : -183
matrix_r2c0 : 256
matrix_r2c1 : 454
matrix_r2c2 : 0
input_bias_0 : 0
input_bias_1 : 128
input_bias_2 : 128

色域转换功能由csc_switch参数控制,并通过色域转换系数
matrix_rc、通道交换rbuv_swap_switch等参数配合使用。
AlPP中,一旦确认了AIPP处理前与AIPP处理后的图片格式,即可确定色域转换相关的参数值,用户无需修改,模板示例以及更多配置模板请参见色域转换配置说明在示例中,就做了一个YUV420SP转RGB的色域转换操作.

aipp_op {
aipp_mode : static
#AIPP香配置模式。这里为静态AIPP
input_format : YUV420SP_U8#输入给AIPP的原始图片格式src_image_size_w : 250#输入给AIPP的原始图片宽高src_image_size_h : 250
crop: true
#抠图开关,用于改变图片尺寸
load_start_pos_h: o
#抠图是起始位善水平、垂直方向坐标
load_start_pos_w: o
aipp_op {
aipp_mode : static
#AIPP香配置模式。这里为静态AIPP
input_format : YUV420SP_U8#输入给AIPP的原始图片格式src_image_size_w : 250#输入给AIPP的原始图片宽高src_image_size_h : 250
crop: true
#抠图开关,用于改变图片尺寸
load_start_pos_h: o
#抠图是起始位善水平、垂直方向坐标
load_start_pos_w: o
csc_switch : true
#色域转换开关
matrix_roc0 : 256
#色域专换系数。用户无需修改
matrix_roc1 : o
matrix_roc2 : 359
matrix_r1c0 : 256
matrix_r1c1 : -88
matrix_r1c2 : -183
matrix_r2c0 : 256
matrix_r2c1 : 454
matrix_r2c2 : 0
input_bias_o : 0
input_bias_1 : 128
input_bias_2 :128
mean_chn_0:104
#归一化配置
mean_chn_1: 117
mean_chn_2:123
min_chn_0: 0.0
min_chn_1: 0.0
min_chn_2: 0.0
var_reci_chn_0: 1.0
var_reci_chn_1: 1.0
var_reci_chn_2:1.0

5.AIPP归一化

归一化就是要把需要处理的数据经过处理后限制在一定范围内,符合模型要求。
AIPP支持的归一化设置,通过减均值和乘系数的操作完成,其中,mean_chn i表示每个通道的均值,min_chn_i表示每个通道的最小值,var_reci_chn表示每个通道方差的倒数,各通路的这三个值都是需要进行配置的参数。

pixel_out_chx(i)=[pixel_in_chx(i)-mean_chn_i-min_chn_i]*var_reci_chn

在test.cfg中,mean_chn_i有取值,min_chn_i为0,
var_reci_chn为1.0,所以只做了减均值的操作,片段如下:

mean_chn_0: 104
#归一化配置
mean_chn_1: 117
mean_chn_2: 123
min_chn_0: 0.0
min_chn_1: 0.0
min_chn_2: 0.0
var_reci_chn_0: 1.0
var_reci_chn_1: 1.0
var_reci_chn_2: 1.0

6 基本场景及参数介绍

接下来将根据图片分类应用[2中的模型转换介绍实际使用场景。

6.1.场景说明

该样例使用的是已经训练好的pytorch框架的ResNet-50开源模型。模型的基本信息如下所示:
输入数据:RGB格式、224*224分辨率的输入图片。
输出数据:图片的类别标签及其对应置信度。
**归一化:**需要进行减均值([0.485,0.456,0.406])及乘系数([0.229,0.224,0.225])操作

6.2 不使用AIPP进行模型转换

该模型的转换命令如下:


wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/003_Atc_Models/resnet50/resnet50.onnx
atc --model=resnet50.onnx 
--framework=5 
--output=resnet50 
--input_format=NCHW 
--input_shape="actual_input_1:1,3,224,224" 
--soc_version=Ascend310

经过模型转换后,输出的om模型和原始模型输入输出数据一致。此时数据预处理需要将数据处理为RGB格式,缩放到224*224分辨率、数据进行归一化后才能送入om模型进行推理。

6.3 使用AIPP进行模型转换

AIPP配置文件如下:

aipp_op{
wget https://obs-9be7.obs.cn-east-
aipp_mode:static
2.myhuaweicloud.com/003_Atc_Models/resnet50/resnet50.onnx
input_format : RGB888_U8
src_image_size_w : 256
wget https://obs-9be7.obs.cn-east-
src_image_size_h : 256
2.myhuaweicloud.com/003_Atc_Models/resnet50/resnet50_CV/aipp.cfg
crop: true
load_start_pos_h : 16
load_start_pos_w : 16
crop_size_w : 224
crop_size_h: 224
min_chn_0 : 123.675
min_chn_1 :116.28min_chn_2 : 103.53
var_reci_chn_O: 0.0171247538316637
var_reci_chn_1: 0.0175070028011204
var_reci_chn_2: 0.0174291938997821

模型转换命令如下:

模型转换命令如下:
wget https://obs-9be7.obs.cn-east-
2.myhuaweicloud.com/003_Atc_Models/resnet50/resnet50.onnx
wget https://obs-9be7.obs.cn-east-
2.myhuaweicloud.com/003_Atc_Models/resnet50/resnet50_CV/aipp.cfg
atc --model=resnet50.onnx --framework=5 --output=resnet50 -
-input_format=NCHw --
input_shape="actual_input_1:1,3,224,224"--
soc_version=Ascend310 --insert_op_conf=aipp.cfg

经过模型转换后,输出的om模型和原始模型输入不一致,输出数据一致。此时数据预处理需要将数据处理为RGB格式、缩放到224*224分辨率后即可送入om模型进行推理。此时om会先通过AlPP进行归一化,然后再继续推理。
soc_version=Ascend310 --insert_op_conf=aipp.cfg
\

6.4参数说明

6.4.1 --model

填写原始网络模型文件路径与文件名。当原始模型为Caffe框架时,需要和–weight参数配合使用。参数使用参考示例如下:

# Caffe模型
--model=$HOME/module/resnet50.prototxt 
--weight=$HOME/module/resnet50.c.affemodel
# MindSpore模型
--model=resnet50.airpb模型
--model=resnet50.pb
# onnx模型
--model=resnet50.onnx--framework

atc --model=resnet50.onnx --framework=5 --output=resnet50 -
-input_format=NCHw –
input_shape=“actual_input_1:1,3,224,224”–

6.4.2 framework

填写原始网络模型框架,参数取值与使用参考示例如下:

#取值为O时,即为Caffe框架网络模型,模型包括后缀为prototxt的模型文件和后缀为caffemodel的权重文件
--framework=0
#取值为1时,即为MindSpore框架网络模型,仅支持后缀为*.air的模型文件。
--framework=1
#取值为3时,即为TensorFlow框架网络模型,只支持尾缀为pb的模型文件
--framework=3
#取值为5时,即为ONNX格式网络模型,仅支持ai.onnx算子域中opset v11版本的算子,用户也可以将其他opset版本的算子(比如opset v9),通过PyTorch转换成opset v11版本的ONNx算子;而使用PyTorch训练出的pth模型需要转化为ONNX格式的模型,才能进行模型转换。
--framework=5

6.4.3 --input_format

填写输入数据格式,Caffe、ONNX默认为NCHW; TensorFlow默认为NHWC。该参数一般不需要填写,直接使用默认值即可,但是该参数存在以下限制:
1.如果TensorFlow模型是通过ONNX模型转换工具输出的,则该参数必填,且值为NCHW.2.当原始框架为MindSpore时,只支持配置为NCHW.
3.如果模型转换时开启AIPP,在进行推理业务时,输入图片数据要求为NHWC排布,该场景下最终与AIPP连接的输入节点的格式被强制
改成NHWC,可能与atc模型转换命令中–input_format参数指定的格式不—致。


# input format参数填写示例
--input_format=NCHw#input shape参数填写示例
--input_shape="actual_input_1:1,3,224,224"

6.4.4 --output

当进行开源框架的网络模型转换时,填写输出的离线模型的路径以及文件名。参数使用参考示例如下:

#指定目录
--output=$HOME/resnet50#当前目录
--output=resnet50

换后的模型文件名以该参数指定的为准,自动以.om后缀结尾,以上示例最终生成的模型为resnet50.om。

6.4.5 --insert_op_conf

填写插入算子的配置文件路径与文件名,例如aipp预处理算子。
本章节中主要使用场景为插入aipp预处理算子,使用该参数后,则输入数据类型为UINT8。

--insert_op_conf=aipp.cfg

这篇关于【2023 · CANN训练营第一季】进阶班 应用开发:模型转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/qq_43280580/article/details/130736124
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/351193

相关文章

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Python实现AVIF图片与其他图片格式间的批量转换

《Python实现AVIF图片与其他图片格式间的批量转换》这篇文章主要为大家详细介绍了如何使用Pillow库实现AVIF与其他格式的相互转换,即将AVIF转换为常见的格式,比如JPG或PNG,需要的小... 目录环境配置1.将单个 AVIF 图片转换为 JPG 和 PNG2.批量转换目录下所有 AVIF 图

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2