基于STM32HAL库看门狗(独立看门狗)-简述

2023-11-05 16:44

本文主要是介绍基于STM32HAL库看门狗(独立看门狗)-简述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

概述

一、开发环境

二、STM32CubeMx配置

三、编码 

四、运行结果

五、总结


概述

        一个成熟靠谱的项目,离不开“看门狗”的必选项,凡是人写的程序多少都会有出现bug的情况(或芯片外设受外界干扰导致故障程序卡死、跑飞的情况)。为了避免产品变成砖头,引入看门狗是很有必要,可以有效解决程序的跑飞(确保程序在大部分情况能正常运行)。

 来自百度百科解释(看门狗)
        
看门狗定时器(WDT,Watch Dog Timer)是单片机的一个组成部分,它实际上是一个计数器,一般给看门狗一个数字,程序开始运行后看门狗开始计数。如果程序运行正常,过一段时间CPU应发出指令让看门狗置零,重新开始计数。如果看门狗增加到设定值就认为程序没有正常工作,强制整个系统复位。

STM32的内置看门狗-(详细请移步参阅-STM32F4xx中文参考手册.pdf文档)

        STM32内置两个看门狗,提供了更高的安全性、时间的精确性和使用的灵活性。两个看门狗设备(独立看门狗、窗口看门狗)可以用来检测和解决由软件错误引起的故障。当计数器达到给定的超时值时,触发一个中断(仅适用窗口看门狗)或者产生系统复位。

1)、独立看门狗(IWDG)由专用的低速时钟(LSI)驱动(32kHz),即使主时钟发生故障它仍有效。独立看门狗适合应用于需要看门狗作为一个在主程序之外 能够完全独立工作,并且对时间精度要求低的场合。
2)、窗口看门狗由从APB1时钟(84MHz)分频后得到时钟驱动(42MHz)。通过可配置的时间窗口来检测应用程序非正常的过迟或过早操作。  窗口看门狗最适合那些要求看门狗在精确计时窗口起作用的程序。

一、开发环境

1、硬件平台
     STM32F401CEU6
     内部Flash : 512Kbytes,SARM : 96 Kbytes

二、STM32CubeMx配置

 2.1、系统时钟配置

2.2、下载调试配置

2.3、TIM配置(1ms中断)

2.4、usart1配置

2.5、独立看门狗(IWDG)

A) IWDG时钟预分频系数  32分频   
B) 计数器重装载值  4095   RLR

时钟频率LSI=32KHz, 一个看门狗时钟周期就是最短超时时间。(M4内核)
最长超时时间= (IWDG_RLR寄存器最大值)x 看门狗时钟周期
超出(溢出)时间计算:单位为 ms

                  Tout=((4×2^PRER) ×RLR)/LSI时钟频率
通过公式得出:Tout=(4x2^3)×4095/32=4095ms

对应不同预分频系数的PRER值:

详解:
       Tout 为看门狗溢出时间(单位为 ms); prer 为看门狗时钟预分频值( IWDG_PR 值),范围为 0~7; rlr 为看门狗的重装载值( IWDG_RLR 的值);
我们设定prer值为6(6 代表的是 256 分频, HAL 库中可以使用宏定义标识符IWDG_PRESCALER_256),rlr值为4095,那么就可以得到Tout=256×4095/32=32760ms。这样,看门狗的溢出时间就是32760ms。只要你在32.76秒钟之内,有一次写入 0XAAAA 到 IWDG_KR,就不会导致看门狗复位(当然写入多次也是可以的)。这里需要提醒大家的是,看门狗的时钟不是准确的 32Khz,所以在喂狗的时候,最好不要太晚了,否则,有可能发生看门狗复位。

2.6、生成代码

三、编码 

1、usart.c

/* USER CODE BEGIN Header */
/********************************************************************************* @file    usart.c* @brief   This file provides code for the configuration*          of the USART instances.******************************************************************************* @attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "usart.h"/* USER CODE BEGIN 0 *//* USER CODE END 0 */UART_HandleTypeDef huart1;/* USART1 init function */void MX_USART1_UART_Init(void)
{/* USER CODE BEGIN USART1_Init 0 *//* USER CODE END USART1_Init 0 *//* USER CODE BEGIN USART1_Init 1 *//* USER CODE END USART1_Init 1 */huart1.Instance = USART1;huart1.Init.BaudRate = 115200;huart1.Init.WordLength = UART_WORDLENGTH_8B;huart1.Init.StopBits = UART_STOPBITS_1;huart1.Init.Parity = UART_PARITY_NONE;huart1.Init.Mode = UART_MODE_TX_RX;huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart1.Init.OverSampling = UART_OVERSAMPLING_16;if (HAL_UART_Init(&huart1) != HAL_OK){Error_Handler();}/* USER CODE BEGIN USART1_Init 2 *//* USER CODE END USART1_Init 2 */}void HAL_UART_MspInit(UART_HandleTypeDef* uartHandle)
{GPIO_InitTypeDef GPIO_InitStruct = {0};if(uartHandle->Instance==USART1){/* USER CODE BEGIN USART1_MspInit 0 *//* USER CODE END USART1_MspInit 0 *//* USART1 clock enable */__HAL_RCC_USART1_CLK_ENABLE();__HAL_RCC_GPIOA_CLK_ENABLE();/**USART1 GPIO ConfigurationPA9     ------> USART1_TXPA10     ------> USART1_RX*/GPIO_InitStruct.Pin = GPIO_PIN_9|GPIO_PIN_10;GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;GPIO_InitStruct.Alternate = GPIO_AF7_USART1;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);/* USART1 interrupt Init */HAL_NVIC_SetPriority(USART1_IRQn, 0, 0);HAL_NVIC_EnableIRQ(USART1_IRQn);/* USER CODE BEGIN USART1_MspInit 1 *//* USER CODE END USART1_MspInit 1 */}
}void HAL_UART_MspDeInit(UART_HandleTypeDef* uartHandle)
{if(uartHandle->Instance==USART1){/* USER CODE BEGIN USART1_MspDeInit 0 *//* USER CODE END USART1_MspDeInit 0 *//* Peripheral clock disable */__HAL_RCC_USART1_CLK_DISABLE();/**USART1 GPIO ConfigurationPA9     ------> USART1_TXPA10     ------> USART1_RX*/HAL_GPIO_DeInit(GPIOA, GPIO_PIN_9|GPIO_PIN_10);/* USART1 interrupt Deinit */HAL_NVIC_DisableIRQ(USART1_IRQn);/* USER CODE BEGIN USART1_MspDeInit 1 *//* USER CODE END USART1_MspDeInit 1 */}
}/* USER CODE BEGIN 1 */
#include "stdio.h"
#ifdef __GNUC__/* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printfset to 'Yes') calls __io_putchar() */#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */
/*** @brief  Retargets the C library printf function to the USART.* @param  None* @retval None*/
PUTCHAR_PROTOTYPE
{/* Place your implementation of fputc here *//* e.g. write a character to the EVAL_COM1 and Loop until the end of transmission */HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xFFFF);return ch;
}int fgetc(FILE * f)
{uint8_t ch = 0;HAL_UART_Receive(&huart1, (uint8_t *)&ch, 1, 0xffff);return ch;
}/* USER CODE END 1 */

2、 tim.c

/* USER CODE BEGIN Header */
/********************************************************************************* @file    tim.c* @brief   This file provides code for the configuration*          of the TIM instances.******************************************************************************* @attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "tim.h"/* USER CODE BEGIN 0 *//* USER CODE END 0 */TIM_HandleTypeDef htim1;/* TIM1 init function */
void MX_TIM1_Init(void)
{/* USER CODE BEGIN TIM1_Init 0 *//* USER CODE END TIM1_Init 0 */TIM_ClockConfigTypeDef sClockSourceConfig = {0};TIM_MasterConfigTypeDef sMasterConfig = {0};/* USER CODE BEGIN TIM1_Init 1 *//* USER CODE END TIM1_Init 1 */htim1.Instance = TIM1;htim1.Init.Prescaler = 84-1;htim1.Init.CounterMode = TIM_COUNTERMODE_UP;htim1.Init.Period = 1000-1;htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;htim1.Init.RepetitionCounter = 0;htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;if (HAL_TIM_Base_Init(&htim1) != HAL_OK){Error_Handler();}sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK){Error_Handler();}sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK){Error_Handler();}/* USER CODE BEGIN TIM1_Init 2 *//* USER CODE END TIM1_Init 2 */}void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* tim_baseHandle)
{if(tim_baseHandle->Instance==TIM1){/* USER CODE BEGIN TIM1_MspInit 0 *//* USER CODE END TIM1_MspInit 0 *//* TIM1 clock enable */__HAL_RCC_TIM1_CLK_ENABLE();/* TIM1 interrupt Init */HAL_NVIC_SetPriority(TIM1_UP_TIM10_IRQn, 0, 0);HAL_NVIC_EnableIRQ(TIM1_UP_TIM10_IRQn);/* USER CODE BEGIN TIM1_MspInit 1 *//* USER CODE END TIM1_MspInit 1 */}
}void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* tim_baseHandle)
{if(tim_baseHandle->Instance==TIM1){/* USER CODE BEGIN TIM1_MspDeInit 0 *//* USER CODE END TIM1_MspDeInit 0 *//* Peripheral clock disable */__HAL_RCC_TIM1_CLK_DISABLE();/* TIM1 interrupt Deinit */HAL_NVIC_DisableIRQ(TIM1_UP_TIM10_IRQn);/* USER CODE BEGIN TIM1_MspDeInit 1 *//* USER CODE END TIM1_MspDeInit 1 */}
}/* USER CODE BEGIN 1 */
#include "stdio.h"
#include "iwdg.h"
uint32_t timeCount_500ms = 0;
uint32_t timeCount_1000ms = 0;
uint8_t times_refresh = 0;
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim){if(htim->Instance == TIM1){	//任务计数1mstimeCount_500ms++;timeCount_1000ms++;if(timeCount_500ms==500){timeCount_500ms = 0;printf("time + 500ms\n");}if(timeCount_1000ms==1000){timeCount_1000ms = 0;printf("time + 1s\n");HAL_GPIO_TogglePin(LED_GPIO_Port, LED_Pin);  //LED翻转  --闪烁表示喂狗成功times_refresh++;if (times_refresh < 2) { HAL_IWDG_Refresh(&hiwdg);      //喂狗printf("成功喂狗!!! \n");} else if (times_refresh == 5){times_refresh = 0;printf("超时喂狗!!! \n");}}}
}/* USER CODE END 1 */

3、iwdg.c 文件 默认即可
       只需关注HAL库独立窗口狗以下的API即可:

HAL_WWDG_Init(WWDG_HandleTypeDef *hwwdg); 	//看门狗初始化HAL_WWDG_Refresh(WWDG_HandleTypeDef *hwwdg);	//喂狗

4、main.c文件

/* USER CODE BEGIN Header */
/********************************************************************************* @file           : main.c* @brief          : Main program body******************************************************************************* @attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "iwdg.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD *//* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD *//* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*//* USER CODE BEGIN PV *//* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 *//* USER CODE END 0 *//*** @brief  The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_USART1_UART_Init();MX_TIM1_Init();MX_IWDG_Init();/* USER CODE BEGIN 2 */HAL_TIM_Base_Start_IT(&htim1);printf("heihei iwdg \r\n");/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Configure the main internal regulator output voltage*/__HAL_RCC_PWR_CLK_ENABLE();__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.LSIState = RCC_LSI_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLM = 25;RCC_OscInitStruct.PLL.PLLN = 168;RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;RCC_OscInitStruct.PLL.PLLQ = 4;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK){Error_Handler();}
}/* USER CODE BEGIN 4 *//* USER CODE END 4 *//*** @brief  This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef  USE_FULL_ASSERT
/*** @brief  Reports the name of the source file and the source line number*         where the assert_param error has occurred.* @param  file: pointer to the source file name* @param  line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

四、运行结果

五、总结

        好了,介绍完毕。有了它,再也不用担心,程序跑飞了,希望对你有所帮助,谢谢光临!感谢参阅。

这篇关于基于STM32HAL库看门狗(独立看门狗)-简述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/351159

相关文章

poj 2594 二分图最大独立集

题意: 求一张图的最大独立集,这题不同的地方在于,间接相邻的点也可以有一条边,所以用floyd来把间接相邻的边也连起来。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <sta

poj 3692 二分图最大独立集

题意: 幼儿园里,有G个女生和B个男生。 他们中间有女生和女生认识,男生男生认识,也有男生和女生认识的。 现在要选出一些人,使得这里面的人都认识,问最多能选多少人。 解析: 反过来建边,将不认识的男生和女生相连,然后求一个二分图的最大独立集就行了。 下图很直观: 点击打开链接 原图: 现图: 、 代码: #pragma comment(

最大流=最小割=最小点权覆盖集=sum-最大点权独立集

二分图最小点覆盖和最大独立集都可以转化为最大匹配求解。 在这个基础上,把每个点赋予一个非负的权值,这两个问题就转化为:二分图最小点权覆盖和二分图最大点权独立集。   二分图最小点权覆盖     从x或者y集合中选取一些点,使这些点覆盖所有的边,并且选出来的点的权值尽可能小。 建模:     原二分图中的边(u,v)替换为容量为INF的有向边(u,v),设立源点s和汇点t

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

第四次北漂----挣个独立游戏的素材钱

第四次北漂,在智联招聘上,有个小公司主动和我联系。面试了下,决定入职了,osg/osgearth的。月薪两万一。 大跌眼镜的是,我入职后,第一天的工作内容就是接手他的工作,三天后他就离职了。 我之所以考虑入职,是因为 1,该公司有恒歌科技的freex平台源码,可以学学,对以前不懂的解解惑。 2,挣点素材钱,看看张亮002的视频,他用了6000多,在虚幻商城买的吸血鬼游戏相关的素材,可以玩两年。我

笔记本电脑配置:选择独立显卡还是集成显卡

2.4.1  笔记本电脑配置:选择独立显卡还是集成显卡   一般个人用笔记本电脑划分高低档次的方法主要是看CPU的档次和有无独立显卡。由于笔记本电脑的显卡通常设计成不能升级的部件,一旦选择后,显卡的配置就不能再变,而显卡通常会影响是否能玩哪些游戏或影响3D程序的运行速度,因此需要重点考虑。   集成显卡的特点是功耗小、发热量小、显存从内存中分配、价格便宜,适合上网、办公应用、学习、炒

独立按键单击检测(延时消抖+定时器扫描)

目录 独立按键简介 按键抖动 模块接线 延时消抖 Key.h Key.c 定时器扫描按键代码 Key.h Key.c main.c 思考  MultiButton按键驱动 独立按键简介 ​ 轻触按键相当于一种电子开关,按下时开关接通,松开时开关断开,实现原理是通过轻触按键内部的金属弹片受力弹动来实现接通与断开。  ​ 按键抖动 由于按键内部使用的是机

1、简述linux操作系统启动流程

1、简述linux操作系统启动流程 启动第一步--加载BIOS 当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的重要,以至于计算机必须在最开始就找到它。这是因为BIOS中包含了CPU的相关信息、设备启动顺序信息、硬盘信息、内存信息、时钟信息、PnP特性等等。开机时将ROM中的指令映射到RAM的低地址空间,CPU读取到这些指令,硬件的健康状况进行检查,按照BIOS中设置的启

【Java String】简述String类比较和常量池内存分析

一、引出正题 String 类型对象进行比较时,我们一般使用 equals() 的方式进行值比较,但是有时候可能会出现 == 对象比较的方式。 在使用 == 比较的时候,往往是和String在JVM内存存储结构有关,这也引起了部分同学使用时的错误,那么接下来我们来详细分析一下此问题。 二、举例说明 1、new String("xx")都是在堆上创建字符串对象。当调用 intern() 方