阿里Datawhale二手车价格预测——优胜奖方案总结(代码开源)

本文主要是介绍阿里Datawhale二手车价格预测——优胜奖方案总结(代码开源),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

阿里天池联合Datawhale比赛传送链接
官方论坛本文链接
比赛代码开源链接

本次比赛的最终名次是13/2815,刚好挤上了优胜奖的末班车。。

解决方案及算法

        • 比赛介绍
        • 数据处理
        • 特征工程
        • 选择的模型
        • 集成的方法
        • 后期上分
        • 赛后总结

比赛介绍

赛题以二手车市场为背景,要求选手预测二手汽车的交易价格,这是一个典型的回归问题。
其他具体流程可以看比赛官网。

数据处理

1、box-cox变换目标值“price”,解决长尾分布。

2、删除与目标值无关的列,例如“SaleID”,“name”。这里可以挖掘一下“name”的长度作为新的特征。

3、异常点处理,删除训练集特有的数据,例如删除“seller”==1的值。

4、缺失值处理,分类特征填充众数,连续特征填充平均值。

5、其他特别处理,把取值无变化的列删掉。

6、异常值处理,按照题目要求“power”位于0~600,因此把“power”>600的值截断至600,把"notRepairedDamage"的非数值的值替换为np.nan,让模型自行处理。

特征工程

1、时间地区类
从“regDate”,“creatDate”可以获得年、月、日等一系列的新特征,然后做差可以获得使用年长和使用天数这些新特征。

“regionCode”没有保留。
因为尝试了一系列方法,并且发现了可能会泄漏“price”,因此最终没保留该特征。

2、分类特征
对可分类的连续特征进行分桶,kilometer是已经分桶了。
然后对"power"和"model"进行了分桶。

使用分类特征“brand”、“model”、“kilometer”、“bodyType”、“fuelType”与“price”、“days”、“power”进行特征交叉。
交叉主要获得的是后者的总数、方差、最大值、最小值、平均数、众数、峰度等等

这里可以获得非常多的新特征,挑选的时候,直接使用lightgbm帮我们去选择特征,一组组的放进去,最终保留了以下特征。(注意:这里使用1/4的训练集进行挑选可以帮助我们更快的锁定真正Work的特征)

'model_power_sum','model_power_std', 
'model_power_median', 'model_power_max',
'brand_price_max', 'brand_price_median',
'brand_price_sum', 'brand_price_std',
'model_days_sum','model_days_std', 
'model_days_median', 'model_days_max', 
'model_amount','model_price_max', 
'model_price_median','model_price_min', 
'model_price_sum', 'model_price_std',
'model_price_mean'

3、连续特征
使用了置信度排名靠前的匿名特征“v_0”、“v_3”与“price”进行交叉,测试方法以上述一样,效果并不理想。
因为都是匿名特征,比较训练集和测试集分布,分析完基本没什么问题,并且它们在lightgbm的输出的重要性都是非常高的,所以先暂且全部保留。

4、补充特征工程
主要是对输出重要度非常高的特征进行处理
特征工程一期
对14个匿名特征使用乘法处理得到14*14个特征

使用sklearn的自动特征选择帮我们去筛选,大概运行了半天的时间。
大致方法如下:

from mlxtend.feature_selection import SequentialFeatureSelector as SFS
from sklearn.linear_model import LinearRegression
sfs = SFS(LGBMRegressor(n_estimators = 1000,objective='mae' ),k_features=50,forward=True,floating=False,cv = 0)sfs.fit(X_data, Y_data)
print(sfs.k_feature_names_)

最终筛选得到:

'new3*3', 'new12*14', 'new2*14','new14*14'

特征工程二期
对14个匿名特征使用加法处理得到14*14个特征
这次不选择使用自动特征选择了,因为运行实在太慢了,笔记本耗不起。
使用的方法是删除相关性高的变量,把要删除的特征记录下来
大致方法如下:(剔除相关度>0.95的)

corr = X_data.corr(method='spearman')
feature_group = list(itertools.combinations(corr.columns, 2))
print(feature_group)# 删除相关性高的变量,调试好直接去主函数进行剔除
def filter_corr(corr, cutoff=0.7):cols = []for i,j in feature_group:if corr.loc[i, j] > cutoff:print(i,j,corr.loc[i, j])i_avg = corr[i][corr[i] != 1].mean()j_avg = corr[j][corr[j] != 1].mean()if i_avg >= j_avg:cols.append(i)else:cols.append(j)return set(cols)drop_cols = filter_corr(corr, cutoff=0.95)
print(drop_cols)

最终获得的应该删除的特征为:

['new14+6', 'new13+6', 'new0+12', 'new9+11', 'v_3', 'new11+10', 'new10+14', 'new12+4', 'new3+4', 'new11+11', 'new13+3', 'new8+1', 'new1+7', 'new11+14', 'new8+13', 'v_8', 'v_0', 'new3+5', 'new2+9', 'new9+2', 'new0+11', 'new13+7', 'new8+11', 'new5+12', 'new10+10', 'new13+8', 'new11+13', 'new7+9', 'v_1', 'new7+4', 'new13+4', 'v_7', 'new5+6', 'new7+3', 'new9+10', 'new11+12', 'new0+5', 'new4+13', 'new8+0', 'new0+7', 'new12+8', 'new10+8', 'new13+14', 'new5+7', 'new2+7', 'v_4', 'v_10', 'new4+8', 'new8+14', 'new5+9', 'new9+13', 'new2+12', 'new5+8', 'new3+12', 'new0+10', 'new9+0', 'new1+11', 'new8+4', 'new11+8', 'new1+1', 'new10+5', 'new8+2', 'new6+1', 'new2+1', 'new1+12', 'new2+5', 'new0+14', 'new4+7', 'new14+9', 'new0+2', 'new4+1', 'new7+11', 'new13+10', 'new6+3', 'new1+10', 'v_9', 'new3+6', 'new12+1', 'new9+3', 'new4+5', 'new12+9', 'new3+8', 'new0+8', 'new1+8', 'new1+6', 'new10+9', 'new5+4', 'new13+1', 'new3+7', 'new6+4', 'new6+7', 'new13+0', 'new1+14', 'new3+11', 'new6+8', 'new0+9', 'new2+14', 'new6+2', 'new12+12', 'new7+12', 'new12+6', 'new12+14', 'new4+10', 'new2+4', 'new6+0', 'new3+9', 'new2+8', 'new6+11', 'new3+10', 'new7+0', 'v_11', 'new1+3', 'new8+3', 'new12+13', 'new1+9', 'new10+13', 'new5+10', 'new2+2', 'new6+9', 'new7+10', 'new0+0', 'new11+7', 'new2+13', 'new11+1', 'new5+11', 'new4+6', 'new12+2', 'new4+4', 'new6+14', 'new0+1', 'new4+14', 'v_5', 'new4+11', 'v_6', 'new0+4', 'new1+5', 'new3+14', 'new2+10', 'new9+4', 'new2+6', 'new14+14', 'new11+6', 'new9+1', 'new3+13', 'new13+13', 'new10+6', 'new2+3', 'new2+11', 'new1+4', 'v_2', 'new5+13', 'new4+2', 'new0+6', 'new7+13', 'new8+9', 'new9+12', 'new0+13', 'new10+12', 'new5+14', 'new6+10', 'new10+7', 'v_13', 'new5+2', 'new6+13', 'new9+14', 'new13+9', 'new14+7', 'new8+12', 'new3+3', 'new6+12', 'v_12', 'new14+4', 'new11+9', 'new12+7', 'new4+9', 'new4+12', 'new1+13', 'new0+3', 'new8+10', 'new13+11', 'new7+8', 'new7+14', 'v_14', 'new10+11', 'new14+8', 'new1+2']]

特征工程三、四期
这两期的效果不明显,为了不让特征冗余,所以选择不添加这两期的特征,具体的操作可以在feature处理的代码中看到。

5、神经网络的特征工程补充说明
以上特征工程处理都是针对于树模型来进行的,接下来,简单说明神经网络的数据预处理。
各位都知道由于NN的不可解释性,可以生成大量的我们所不清楚的特征,因此我们对于NN的数据预处理只要简单处理异常值以及缺失值。

大部分的方法都包含在以上针对树模型数据处理方法中,重点讲述几个不同点:
在对于“notRepairedDamage”的编码处理,对于二分类的缺失值,往往取其中间值。
在对于其他缺失值的填充,在测试了效果后,发现填充众数的效果比平均数更好,因此均填充众数。

选择的模型

本次比赛,我选择的是lightgbm+catboost+neural network。
本来也想使用XGBoost的,不过因为它需要使用二阶导,因此目标函数没有MAE,并且用于逼近的一些自定义函数效果也不理想,因此没有选择使用它。

经过上述的数据预处理以及特征工程:
树模型的输入有83个特征;神经网络的输入有29个特征。

1、lightgbm和catboost
因为它们都是树模型,因此我同时对这两个模型进行分析

第一:lgb和cab的训练收敛速度非常快,比同样参数的xgb快非常多。
第二:它们可以处理缺失值,计算取值的增益,择优录取。
第三:调整正则化系数,均使用正则化,防止过拟合。
第四:降低学习率,获得更小MAE的验证集预测输出。
第五:调整早停轮数,防止陷入过拟合或欠拟合。
第六:均使用交叉验证,使用十折交叉验证,减小过拟合。
其他参数设置无明显上分迹象,以代码为准,不一一阐述。

2、neural network
在这里插入图片描述
设计了一个五层的神经网络,大致框架如上图所示,但结点数由于太多只是展示部分结点画图。(无聊画了个。。)
以下为全连接层的结点个数设置,具体实施可参考代码。
在这里插入图片描述
接下来对神经网络进行具体分析:
第一:训练模型使用小batchsize,512,虽然在下降方向上可能会出现小偏差,但是对收敛速度的收益大,2000代以内可以收敛。
第二:神经网络对于特征工程这一类不用操心很多,就能达到与树模型相差无几的精度。
第三:调整正则化系数,使用正则化,防止过拟合。
第四:调整学习率,对训练过程的误差进行分析,选择学习率下降的时机进行调整。
第五:使用交叉验证,使用十折交叉验证,减小过拟合。
第六:选择梯度下降的优化器为Adam,它是目前综合能力较好的优化器,具备计算高效,对内存需求少等等优点。

集成的方法

由于两个树模型的训练数据一样且结构相似,首先对两个树模型进行stacking,然后再与神经网络的输出进行mix。
由于树模型和神经网络是完全不同的架构,它们得到的分数输出相近,预测值差异较大,往往在MAE上差异为200左右,因此将他们进行MIX可以取到一个更好的结果,加权平均选择系数选择0.5,虽然神经网络的分数确实会比树模型高一点点,但是我们的最高分是多组线上最优输出的结合,因此可以互相弥补优势。

在这里插入图片描述

后期上分

单个神经网络和树模型的结合在本地验证集上都是420分左右;然后经过以上的模型集成,线下验证集为415分左右,线上得到的分数位于404~410,后期因为没有其他的上分方法,因此每上一分都是非常困难的,最终会使用更换种子输出多个文件,挑选了最好的三个分数进行平均最终获得线上第十三名。

赛后总结

本次赛后,看到论坛上的单模型就可以到达400分,因此个人对本次比赛总结一下几点:

  • 我的最大的败笔应该是没有充分发挥神经网络的优势,没有人为的制造多一些的特征;
  • 从这单单29个特征的nn就可以媲美千挑万选特征的树模型,我猜想高分选手使用的是神经网络+更好的特征工程;
  • 或者,本次比赛存在着leaky,让敏锐的前排大佬们给捕捉到了,期待前排的开源;
  • 最后,感谢主办方阿里天池与Datawhale,希望能够继续举办这样有趣的赛事~

这篇关于阿里Datawhale二手车价格预测——优胜奖方案总结(代码开源)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/350776

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

金融业开源技术 术语

金融业开源技术  术语 1  范围 本文件界定了金融业开源技术的常用术语。 本文件适用于金融业中涉及开源技术的相关标准及规范性文件制定和信息沟通等活动。

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的