【通信】两层无线 Femtocell 网络上行链路中的最优功率分配附matlab代码

本文主要是介绍【通信】两层无线 Femtocell 网络上行链路中的最优功率分配附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 简介

In this thesis, the problem of efficient power allocation in the uplink of two-tier closed-access femtocell networks is addressed. Specifically, a single CDMA macrocell is assumed, where Ν femtocells reside within the macrocell. Within the proposed framework, which supports multiple services, appropriate utility functions are adopted to reflect users’ degree of satisfaction with respect to their actual throughput requirements and the corresponding power consumption. The overall problem is formulated as a non-cooperative game where users aim selfishly at maximizing their utility-based performance while taking into account the interference caused by both the CDMA macrocell and the neighbouring femtocells.

The existence and uniqueness of a Nash equilibrium point of the proposed Multi Service Two-Tier Power Control Game with Pricing (MTTPG) is proven, at which all users have achieved a targeted SINR threshold value or transmit with their maximum power, leading essentially to an SINR-balanced system. Moreover, a distributed iterative algorithm for reaching MTTPG game’s equilibrium is provided. Finally, the operational effectiveness of the proposed approach is evaluated through modeling and simulation, while its superiority is illustrated via presenting various scenarios of the proposed framework.

The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hotspots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells – also called home base-stations (HBS), home node-stations (HNB) or FAPs (Femto Access Points) – which are data access points installed by home users to get better indoor voice and data coverage (Chandrasekhar & Andrews, 2008).

The demand for higher data rates in wireless networks is unrelenting, and has triggered the design and development of new data-minded cellular standards such as WiMAX (802.16e), 3GPP’s High Speed Packet Access (HSPA) and LTE standards, as well as the 3GPP2’s EVDO and UMB standards. Moreover, Wi-Fi networks are nowadays the de facto standard in wireless data communications since they can provide the high transmission rates demanded by the consumers in indoor buildings for Internet services. Although the Wi-Fi networks will not be able to support the same level of mobility and coverage as the cellular standards, to be competitive for home and office use, cellular data systems will need to provide service roughly comparable to that offered by the Wi-Fi networks. Studies on wireless usage show that more than 50 percent of all voice calls and more than 70 percent of data traffic originate indoors and thus, cellular networks must meet the expectations of both kinds of user services (Chandrasekhar & Andrews, 2008).

The growth in wireless capacity is exemplified by this observation from Martin Cooper of Arraycomm: “The wireless capacity has doubled every 30 months over the last 104 years”. This translates into an approximately million-fold capacity increase since 1957. Breaking down these gains shows a 25x improvement from wider spectrum, a 5x improvement by dividing the spectrum into smaller slices, a 5x improvement by designing better modulation schemes, and a whopping 1600x gain through reduced cell sizes and transmit distance. This reduction of the cell boundaries was done gradually, starting from the microcells (with a radius of a few hundred meters), then the relays that functioned as small base stations which provided service for places where the central macrocell could not have satisfactory cover and reaching the femtocells today (Andrews, Claussen, Dohler, Rangan, & Reed, 2012).

Figure 1: A macrocell deployed with 5 femtocells for better network coverage

While the femtocells can be installed easily by the home users, have a low transmission power and can cover a small-radius distance, they also allow the network provider to greatly improve the indoors coverage, especially in places such as apartments, metro stations, company offices, etc. Moreover, by assigning the indoor users to femtocells, the macrocell can distribute its resources to less users and thus improve their service quality. So, not only can femtocells contribute to the improvement of the network’s indoor coverage but also to its overall throughput (see Figure 1). Regarding the communication of the femtocells with the rest of the cellular network, this can be done over an existing broadband connection such as the digital subscriber line (DSL), via the cable modem (IP backhaul) or by a separate radio frequency (RF) backhaul channel (see Figure 2).

Femtocells are compatible with cell phones, personal computers and generally every 3G-enabled device. Due to their short transmit-receive distance, femtocells can greatly lower transmit power, prolong handset battery life, and achieve a higher signal-to-interference-plus-noise ratio (SINR). All these translate into improved reception – the so-called five-bar coverage – and higher capacity. Because of the reduced interference, more users can be packed into a given area in the same region of spectrum, thus increasing the area spectral efficiency, or equivalently, the total number of active users per Hz per unit area. Lastly, the cost benefit of deploying femtocells is huge because it reduces the operating and capital expenditure costs for the network operators. A typical urban macrocell costs upwards of $1000/month in site lease, and additional costs for electricity and backhaul. In the future, the macrocell network will be stressed by the operating expenses, especially when the subscriber growth does not match the increased demand for data traffic. The deployment of femtocells will reduce the need for adding macro-BS towers. Recent studies show that the operating expenses scale from $60,000/year/macrocell to just $200/year/femtocell (Chandrasekhar & Andrews, 2008).

Figure 2: Communication of the FAP device with the ISP via DSL and cable broadband connections

1.1 Spectrum Assignment Policies and Interference in Femtocells

Femtocells have critical effects on the performance of mobile networks. While adding femtocells will produce huge benefits for both the operators and the users, a careful preparation should take place regarding the spectrum allocation because without unique spectrum for the femtocell or very careful spectrum planning in the network, femtocells could suffer from severe interference problems (Abdulrahman & Ahmad, 2012). In a Two-Tier Cellular Network (one that has both macrocells and femtocells deployed) there exist two types of interference:

1.Cross-Tier interference: This type of interference is caused between different tier users – that is between a femto-user and a macro-user.

2.Co-Tier interference: This type of interference is caused between users of the same kind of cell – that is between two macro-users or between neighboring femtocells.

Considering the above categorization, three different approaches – spectrum assignment policies – have been proposed to solve the issue of spectrum allocation in Two-Tier Networks (Mesodiakaki, 2011):

1.Dedicated Spectrum: In this case, different frequencies are assigned to femtocells and macrocell. Thus, the cross-tier interference is completely avoided, since the two tiers operate in different channels. On the other hand, this policy results in smaller spectral efficiency since the cells of a tier can only have access to a subset of the total available bandwidth.

2.Shared Spectrum: In this case, maximum spectrum allocation is achieved since all cells (femto and macro) share the same bandwidth and thus have access to all available network resources. However, in such an implementation, the cross-tier interference could degrade the overall performance of the system if it is not effectively addressed. There exist two sub-policies regarding the channel assignment between femtocells and macrocell when we have a shared spectrum policy:

a.Orthogonal assignment: The frequency channel that a macro-user uses is orthogonal with the one assigned to a femto-user (OFDMA) and thus, while sharing the same spectrum, there is no interference between the two users.

b.Co-channel assignment: Every user can be assigned any frequency channel simultaneously and the separation of the users’ signals is done by code-division (simple CDMA).

Figure 3:  The 3 Spectrum Assignment Policies: Dedicated Spectrum, Partially Shared Spectrum and Shared Spectrum

3.Partially Shared Spectrum: This case is considered a middle ground solution between the previous 2 policies since the macrocell has access to all the spectrum while the femtocells operate only on a subset of it. It is considered the best spectrum assignment policy because:

a.The spectral efficiency achieved is even better than the one from the shared spectrum case and

b.It is possible to reduce the cross-tier interference since the macro-users that suffer (or even cause) such interference can use the exclusively dedicated to the macrocell bandwidth – something which the macro-users in the shared spectrum policy simply cannot do (see Figure 3).​

2 部分代码

<span style="color:#333333"><span style="background-color:rgba(0, 0, 0, 0.03)"><code><span style="color:#afafaf">%</span> <span style="color:#dd1144">NTUA Thesis code</span></code><code><span style="color:#afafaf">%</span> <span style="color:#dd1144">John Zobolas, May 2013</span></code><code>​</code><code>function <span style="color:#dd1144">femtopower</span></code><code>    format <span style="color:#dd1144">long;</span></code><code>    global <span style="color:#dd1144">results;</span></code><code>    results = <span style="color:#dd1144">cell(1,10);</span></code><code>    </code><code>    <span style="color:#afafaf">%</span> <span style="color:#dd1144">the "standard" coordinates of the FAPs</span></code><code>    x = <span style="color:#dd1144">[200 400 400 700 600 600 300 850 800 200 600 800 500 200 100 400 700 900];</span></code><code>    y = <span style="color:#dd1144">[500 300 600 600 800 200 800 400 800 200 400 200 900 700 350 100 300 550];</span></code><code>    <span style="color:#afafaf">%</span> <span style="color:#dd1144">Uncomment the below to get a random placement of the FAPs inside the Macrocell</span></code><code>    <span style="color:#afafaf">%x</span> = <span style="color:#dd1144">randi([150 850],1,30);</span></code><code>    <span style="color:#afafaf">%y</span> = <span style="color:#dd1144">randi([150 850],1,30);</span></code><code>    <span style="color:#afafaf">%length(x)</span> = <span style="color:#dd1144">18;</span></code><code>    xf = <span style="color:#dd1144">zeros(1,36);</span></code><code>    yf = <span style="color:#dd1144">zeros(1,36);</span></code><code>    for <span style="color:#dd1144">i=1:18</span></code><code>       while <span style="color:#dd1144">true</span></code><code>           random = <span style="color:#dd1144">2*randi([-18 18],1,4);</span></code><code>            if <span style="color:#dd1144">all(random) % no zeros</span></code><code>                break;</code><code>            end</code><code>       end</code><code>       <span style="color:#afafaf">xf(2*i-1)</span> = <span style="color:#dd1144">x(i)+random(1);% NRT users</span></code><code>       <span style="color:#afafaf">yf(2*i-1)</span> = <span style="color:#dd1144">y(i)+random(2);</span></code><code>       <span style="color:#afafaf">xf(2*i)</span> = <span style="color:#dd1144">x(i)+random(3);% RT users</span></code><code>       <span style="color:#afafaf">yf(2*i)</span> = <span style="color:#dd1144">y(i)+random(4);</span></code><code>    end</code><code>    </code><code>​</code><code>end</code><code>​</code><code>function <span style="color:#dd1144">circle(x,y,r,color)</span></code><code>   th = <span style="color:#dd1144">0:pi/500:2*pi;</span></code><code>   xunit = <span style="color:#dd1144">r * cos(th) + x;</span></code><code>   yunit = <span style="color:#dd1144">r * sin(th) + y;</span></code><code>   <span style="color:#afafaf">plot(xunit,</span> <span style="color:#dd1144">yunit, color);</span></code><code>end</code><code>​</code></span></span>

3 仿真结果

4 参考文献

[1]郑成锵. Femtocell双层网络中上行链路功率控制方法的研究[D]. 南京邮电大学.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

这篇关于【通信】两层无线 Femtocell 网络上行链路中的最优功率分配附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/349943

相关文章

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

无线路由器哪个品牌好用信号强? 口碑最好的三个路由器大比拼

《无线路由器哪个品牌好用信号强?口碑最好的三个路由器大比拼》不同品牌在信号覆盖、稳定性和易用性等方面各有特色,如何在众多选择中找到最适合自己的那款无线路由器呢?今天推荐三款路由器让你的网速起飞... 今天我们来聊聊那些让网速飞起来的路由器。在这个信息爆炸的时代,一个好路由器简直就是家庭网编程络的心脏。无论你

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

IDEA常用插件之代码扫描SonarLint详解

《IDEA常用插件之代码扫描SonarLint详解》SonarLint是一款用于代码扫描的插件,可以帮助查找隐藏的bug,下载并安装插件后,右键点击项目并选择“Analyze”、“Analyzewit... 目录SonajavascriptrLint 查找隐藏的bug下载安装插件扫描代码查看结果总结Sona

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类