基于Redis的Hyperloglog实现日活量和总活跃量统计

2023-11-05 10:40

本文主要是介绍基于Redis的Hyperloglog实现日活量和总活跃量统计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、背景介绍

产品提出想要统计目前系统中某个页面日活量与总活跃用户数量,由于这个页面登录与未登录用户均可访问,因此不能通过用户id来统计,要通过ip地址来做统计和去重处理。

二、技术选型

  • 首先想到的方案是使用redis的set数据结构,因为它是一个无序集合,我们得到ip地址,然后存入set中即可实现统计与去重的效果,但是set有一个很大的问题是,每一条数据占用的空间会比较大,如果数据量很大的话可能会导致内存问题。
  • 因此想到用一些比较节约空间的数据结构,想到了之前了解过的bitmap,空间占用比较低,不过bitmap比较适合预先知道用户数量的场景,我们知道总的用户数就知道到底需要定义一个多少容量的bitmap。而当前场景统计的ip总数是不确定的,因此bitmap不适用。
  • 最终发现Redis的Hyperloglog数据结构非常的符合,Hyperloglog可以实现海量数据的统计与去重。与bitmap不同,它只是输入元素来计算基数,而不会存储元素本身。而这次需求不需要存储具体ip的值,只需要统计整体数量,并去重即可。

三、具体实现

  • 首先要使用一个IPUtil工具类,用来获取访问网站用户的ip。
/*** @Author: qubingquan* @Date: 2020/9/14 1:51 下午*/
public class IPUtil {/*** 获取用户真实IP地址,不使用request.getRemoteAddr();的原因是有可能用户使用了代理软件方式避免真实IP地址。* 可是,如果通过了多级反向代理的话,X-Forwarded-For的值并不止一个,而是一串IP值,究竟哪个才是真正的用户端的真实IP呢?* 答案是取X-Forwarded-For中第一个非unknown的有效IP字符串* @param request* @return*/public static String getIpAddress(HttpServletRequest request) {String ip = request.getHeader("x-forwarded-for");if (ip == null || ip.length() == 0 || "unknown".equalsIgnoreCase(ip)) {ip = request.getHeader("Proxy-Client-IP");}if (ip == null || ip.length() == 0 || "unknown".equalsIgnoreCase(ip)) {ip = request.getHeader("WL-Proxy-Client-IP");}if (ip == null || ip.length() == 0 || "unknown".equalsIgnoreCase(ip)) {ip = request.getHeader("HTTP_CLIENT_IP");}if (ip == null || ip.length() == 0 || "unknown".equalsIgnoreCase(ip)) {ip = request.getHeader("HTTP_X_FORWARDED_FOR");}if (ip == null || ip.length() == 0 || "unknown".equalsIgnoreCase(ip)) {ip = request.getRemoteAddr();if("127.0.0.1".equals(ip) || "0:0:0:0:0:0:0:1".equals(ip)){//根据网卡取本机配置的IPInetAddress inet=null;try {inet = InetAddress.getLocalHost();} catch (UnknownHostException e) {e.printStackTrace();}ip= inet.getHostAddress();}}return ip;}
}
  • 之后我们使用redisTemplate,用来执行Hyperloglog有关命令。
        //获取访问者的ipString ipAdress = IPUtil.getIpAddress(httpServletRequest);log.debug("访问列表页的ip地址为:[{}]",ipAdress);//将ip存入redisHyperLogLogOperations<String,String> hyperlog = redisTemplate.opsForHyperLogLog();hyperlog.add("cpp_bank_list_total_size_today",ipAdress);

这里执行的是 PFADD 命令,用来将数据存入一个Hyperloglog数据结构。我们将这次访问的ip存入 cpp_bank_list_total_size_today 这个变量中。

  • 最后我们看每日0点执行的定时任务
    private static String COUNT = "cpp_bank_list_total_size_today";private static String TOTAL_COUNT = "cpp_bank_list_total_size";private static String TOTAL_ID = "0";@Scheduled(cron = "0 0 0 * * ?")//@Scheduled(cron = "*/5 * * * * ?")public void saveUserAccessLog(){HyperLogLogOperations<String,String> hyperlog = redisTemplate.opsForHyperLogLog();int count = hyperlog.size(COUNT).intValue();Calendar calendar = Calendar.getInstance();calendar.add(Calendar.DAY_OF_MONTH,-1);CppBankAccessLog cppBankAccessLog = CppBankAccessLog.builder().id(Sequence.getInstance().getSequenceNumber()).time(new SimpleDateFormat("yyyy-MM-dd").format(calendar.getTime())).count(count).build();cppBankAccessLogMapper.insertSelective(cppBankAccessLog);//合并每天的访问量到总计中hyperlog.union(TOTAL_COUNT,COUNT);int totalCount = hyperlog.size(TOTAL_COUNT).intValue();cppBankAccessLogMapper.updateCountById(TOTAL_ID,totalCount);log.info("日活量信息入库,昨日数据:[{}],总数据:[{}]",count,totalCount);//删除today中的数据hyperlog.delete(COUNT);}

这里主要做的事情是把当天统计数据入库,之后使用union命令把当天的日活量与总活跃量取并集,再之后入库总活跃量,删除当日日活数据。

四、Hyperloglog原理介绍

首先要说明,HyperLogLog实际上不会存储每个元素的值,它使用的是概率算法,通过存储元素的hash值的第一个1的位置,来计算元素数量。这样做存在误差,不适合绝对准确计数的场景。
redis中实现的HyperLogLog,只需要12K内存,在标准误差0.81%的前提下,能够统计2的64次方个数据。

  • 伯努利实验
    想要了解Hyperloglog原理,首先要了解伯努利实验。
    伯努利实验就是抛硬币,抛几次硬币,之后看最长是抛几次才可以得到正面,如下图所示。

    k是每回合抛到1所用的次数,我们已知的是最大的k值,可以用kmax表示,由于每次抛硬币的结果只有0和1两种情况,因此,kmax在任意回合出现的概率即为

    因此可以推导出

    但这样做误差率是很大的,如k为3,我们会得到抛出的次数为8,但很可能我抛出第一次就是001,即k为3。
    为了降低误差率,引入了桶的概念,计算m个桶的加权平均值。
    下面是LogLog的估算公式:

上面公式的DVLL对应的就是n,constant是修正因子,它的具体值是不定的,可以根据实际情况而分支设置。m代表的是试验的轮数。头上有一横的R就是平均数:(k_max_1 + … + k_max_m)/m。

这种通过增加试验轮次,再取k_max平均数的算法优化就是LogLog的做法。而 HyperLogLog和LogLog的区别就是,它采用的不是平均数,而是调和平均数。调和平均数比平均数的好处就是不容易受到大的数值的影响。
例:
求平均工资:

A的是1000/月,B的30000/月。采用平均数的方式就是: (1000 + 30000) / 2 = 15500
采用调和平均数的方式就是: 2/(1/1000 + 1/30000) ≈ 1935.484

调和平均数公式:

  • Hyperloglog
    对于一个输入的字符串,首先得到64位的hash值,用前14位来定位桶的位置(共有 2的14次方 ,即16384个桶)。后面50位即为伯努利过程,每个桶有6bit,记录第一次出现1的位置count,如果count>oldcount,就用count替换oldcount。

模仿上面的流程,多个不同的用户 id,就被分散到不同的桶中去了,且每个桶有其 k_max。然后当要统计出页面有多少用户点击量的时候,就是一次估算。最终结合所有桶中的 k_max,代入估算公式,便能得出估算值。
每个桶有6bit,即[000 000],最大为[111 111],表示63。

五、写在最后

实际redis会有稀疏存储结构和密集存储结构两种实现,想要了解更多请查阅下方参考资料,有全面的介绍。

六、参考资料

Hyperloglog原理

这篇关于基于Redis的Hyperloglog实现日活量和总活跃量统计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/349291

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、