【算法】昂贵的聘礼(dijkstra算法)

2023-11-05 03:28
文章标签 算法 dijkstra 聘礼 昂贵

本文主要是介绍【算法】昂贵的聘礼(dijkstra算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

        年轻的探险家来到了一个印第安部落里。

        在那里他和酋长的女儿相爱了,于是便向酋长去求亲。

        酋长要他用 10000 个金币作为聘礼才答应把女儿嫁给他。

        探险家拿不出这么多金币,便请求酋长降低要求。

        酋长说:”嗯,如果你能够替我弄到大祭司的皮袄,我可以只要 8000 金币。如果你能够弄来他的水晶球,那么只要 5000 金币就行了。”

        探险家就跑到大祭司那里,向他要求皮袄或水晶球,大祭司要他用金币来换,或者替他弄来其他的东西,他可以降低价格。

        探险家于是又跑到其他地方,其他人也提出了类似的要求,或者直接用金币换,或者找到其他东西就可以降低价格。

        不过探险家没必要用多样东西去换一样东西,因为不会得到更低的价格。

        探险家现在很需要你的帮忙,让他用最少的金币娶到自己的心上人。

        另外他要告诉你的是,在这个部落里,等级观念十分森严。

        地位差距超过一定限制的两个人之间不会进行任何形式的直接接触,包括交易。

        他是一个外来人,所以可以不受这些限制。

        但是如果他和某个地位较低的人进行了交易,地位较高的的人不会再和他交易,他们认为这样等于是间接接触,反过来也一样。

        因此你需要在考虑所有的情况以后给他提供一个最好的方案。

        为了方便起见,我们把所有的物品从 1 开始进行编号,酋长的允诺也看作一个物品,并且编号总是 1。

每个物品都有对应的价格 P主人的地位等级 L以及一系列的替代品 Ti 该替代品所对应的”优惠” Vi

如果两人地位等级差距超过了 M,就不能”间接交易”。

你必须根据这些数据来计算出探险家最少需要多少金币才能娶到酋长的女儿。

输入格式

        输入第一行是两个整数 M,N,依次表示地位等级差距限制和物品的总数。

        接下来按照编号从小到大依次给出了 N 个物品的描述。

        每个物品的描述开头是三个非负整数 P、L、X,依次表示该物品的价格、主人的地位等级和替代品总数。

        接下来 X 行每行包括两个整数 T 和 V,分别表示替代品的编号和”优惠价格”。

输出格式

        输出最少需要的金币数。

数据范围

1 ≤ N ≤ 100
1 ≤ P ≤ 10000
1 ≤ L , M ≤ N
0 ≤ X < N

思路

我们可以根据以下样例绘制一张图:

样例:
1 4
10000 3 2
2 8000
3 5000
1000 2 1
4 200
3000 2 1
4 200
50 2 0

        由图可知,我们可以反向建图,从起始点出发到达所有点的距离为物品 i 的原价从点 i 到点 j 的距离为得到物品 i 之后物品 j 的价格。当我们建完图之后,很容易发现这个问题可以抽象成为一个最短路问题。

         对于阶级问题:for(int i = level[ 1 ] - m; i <= level[ 1 ]; i ++) res = min(res,dijkstra(i, i + m));     i 表示可以交换的下界,i + m表示可以交换的上界 ,循环m次即可得到最小的花费。

  

代码

#include<bits/stdc++.h>
using namespace std;
const int N = 110,INF = 0x3f3f3f3f;
int n,m;// n等级差距限制,m物品个数
int w[N][N],level[N];//level数组储存的是第i个物品的主人所处的阶级,w数组储存点i到点j的边权
int dist[N];// 表示当前买到第i件物品价格的最小值
bool st[N];// 表示当前物品的价格是否为最小值int dijkstra(int down,int up)
{memset(dist,0x3f,sizeof(dist));// 将价格初始化为正无穷memset(st,0,sizeof(st));// 所有物品都没有确定最小价格dist[0] = 0;// 将起始点价格初始化为0int i = n;while(i --)// 循环n次确定n个物品的最小价格{int t = -1;// 在没有找到下一个可以确定价格已经最低的物品编号之前,t = -1for(int j = 0; j <= n; j ++)// 本次循环确定价格最小的物品编号if(!st[j] && (t == -1 || dist[t] > dist[j]))t = j;st[t] = true;// 该物品已经确定为最小价格,标记一下for(int j = 1; j <= n; j ++)// 使用这个已经确定最小价格的点对其他点进行更新if(level[j] >= down && level[j] <= up)// 如果阶级不符合条件,则不进行更新dist[j] = min(dist[j],dist[t] + w[t][j]);}return dist[1];
}int main()
{cin >> m >> n;// m等级差距限制,n物品总数memset(w,0x3f,sizeof(w));// 将数组w初始化for(int i = 1;i <= n; i ++) w[i][i] = 0;for(int i = 1;i <= n; i ++){int price,cnt;// price表示物品的价格,cnt表示替代品的数量cin >> price >> level[i] >> cnt;// 依次输入物品的价值,物品主人的阶级,代替品的数量w[0][i] = min(price,w[0][i]);// 起始点到该物品的距离(物品原价)while(cnt --){int id,cost;cin >> id >> cost;// 输入替代品的数量与价格w[id][i] = min(w[id][i],cost);//保留边权最小的值}}int res = INF;// 将答案初始化为正无穷for(int i = level[1] - m; i <= level[1]; i ++) res = min(res,dijkstra(i, i + m));// i表示可以交换的下界,i + m表示可以交换的上界cout << res << endl;return 0;}

这篇关于【算法】昂贵的聘礼(dijkstra算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/347097

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖