Golang源码分析之golang/sync之singleflight

2023-11-05 00:36

本文主要是介绍Golang源码分析之golang/sync之singleflight,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.1. 项目介绍

golang/sync库拓展了官方自带的sync库,提供了errgroup、semaphore、singleflight及syncmap四个包,本次分析singlefliht的源代码。
singlefliht用于解决单机协程并发调用下的重复调用问题,常与缓存一起使用,避免缓存击穿。

1.2.使用方法

go get -u golang.org/x/sync

  • 核心API:Do、DoChan、Forget
  • Do:同一时刻对某个Key方法的调用, 只能由一个协程完成,其余协程阻塞直到该协程执行成功后,直接获取其生成的值,以下是一个避免缓存击穿的常见使用方法:
func main() {var flight singleflight.Groupvar errGroup errgroup.Group// 模拟并发获取数据缓存for i := 0; i < 10; i++ {i := ierrGroup.Go(func() error {fmt.Printf("协程%v准备获取缓存\n", i)v, err, shared := flight.Do("getCache", func() (interface{}, error) {// 模拟获取缓存操作fmt.Printf("协程%v正在读数据库获取缓存\n", i)time.Sleep(100 * time.Millisecond)fmt.Printf("协程%v读取数据库生成缓存成功\n", i)return "mockCache", nil})if err != nil {fmt.Printf("err = %v", err)return err}fmt.Printf("协程%v获取缓存成功, v = %v, shared = %v\n", i, v, shared)return nil})}if err := errGroup.Wait(); err != nil {fmt.Printf("errGroup wait err = %v", err)}
}
// 输出:只有0号协程实际生成了缓存,其余协程读取生成的结果
协程0准备获取缓存
协程4准备获取缓存
协程3准备获取缓存
协程2准备获取缓存
协程6准备获取缓存
协程5准备获取缓存
协程7准备获取缓存
协程1准备获取缓存
协程8准备获取缓存
协程9准备获取缓存
协程0正在读数据库获取缓存
协程0读取数据库生成缓存成功
协程0获取缓存成功, v = mockCache, shared = true
协程8获取缓存成功, v = mockCache, shared = true
协程2获取缓存成功, v = mockCache, shared = true
协程6获取缓存成功, v = mockCache, shared = true
协程5获取缓存成功, v = mockCache, shared = true
协程7获取缓存成功, v = mockCache, shared = true
协程9获取缓存成功, v = mockCache, shared = true
协程1获取缓存成功, v = mockCache, shared = true
协程4获取缓存成功, v = mockCache, shared = true
协程3获取缓存成功, v = mockCache, shared = true

DoChan:将执行结果返回到通道中,可通过监听通道结果获取方法执行值,这个方法相较于Do来说的区别是执行DoChan后不会阻塞到其中一个协程完成任务,而是异步执行任务,最后需要结果时直接从通道中获取,避免长时间等待。

func testDoChan() {var flight singleflight.Groupvar errGroup errgroup.Group// 模拟并发获取数据缓存for i :=; i < 10; i++ {i := ierrGroup.Go(func() error {fmt.Printf("协程%v准备获取缓存\n", i)ch := flight.DoChan("getCache", func() (interface{}, error) {// 模拟获取缓存操作fmt.Printf("协程%v正在读数据库获取缓存\n", i)time.Sleep( * time.Millisecond)fmt.Printf("协程%v读取数据库获取缓存成功\n", i)return "mockCache", nil})res := <-chif res.Err != nil {fmt.Printf("err = %v", res.Err)return res.Err}fmt.Printf("协程%v获取缓存成功, v = %v, shared = %v\n", i, res.Val, res.Shared)return nil})}if err := errGroup.Wait(); err != nil {fmt.Printf("errGroup wait err = %v", err)}
}
// 输出结果
协程准备获取缓存
协程准备获取缓存
协程准备获取缓存
协程准备获取缓存
协程准备获取缓存
协程准备获取缓存
协程准备获取缓存
协程准备获取缓存
协程准备获取缓存
协程正在读数据库获取缓存
协程读取数据库获取缓存成功
协程准备获取缓存
协程获取缓存成功, v = mockCache, shared = true
协程获取缓存成功, v = mockCache, shared = true
协程获取缓存成功, v = mockCache, shared = true
协程获取缓存成功, v = mockCache, shared = true
协程获取缓存成功, v = mockCache, shared = true
协程获取缓存成功, v = mockCache, shared = true
协程获取缓存成功, v = mockCache, shared = true
协程获取缓存成功, v = mockCache, shared = true
协程获取缓存成功, v = mockCache, shared = true
协程获取缓存成功, v = mockCache, shared = true

2.源码分析

2.1.项目结构

  • singleflight.go:核心实现,提供相关API
  • singleflight_test.go:相关API单元测试

2.2.数据结构

  • singleflight.go
// singleflight.Group
type Group struct {mu sync.Mutex       // map的锁m  map[string]*call // 保存每个key的调用
}// 一次Do对应的响应结果
type Result struct {Val    interface{}Err    errorShared bool
}// 一个key会对应一个call
type call struct {wg sync.WaitGroupval interface{} // 保存调用的结果err error       // 调用出现的err// 该call被调用的次数dups  int// 每次DoChan时都会追加一个chan在该列表chans []chan<- Result
}

2.3.API代码流程

func (g *Group) Do(key string, fn func() (interface{}, error)) (v interface{}, err error, shared bool)

func (g *Group) Do(key string, fn func() (interface{}, error)) (v interface{}, err error, shared bool) {g.mu.Lock()if g.m == nil {// 第一次执行Do的时候创建mapg.m = make(map[string]*call)}// 已经存在该key,对应后续的并发调用if c, ok := g.m[key]; ok {// 执行次数自增c.dups++g.mu.Unlock()// 等待执行fn的协程完成c.wg.Wait()// ...// 返回执行结果return c.val, c.err, true}// 不存在该key,说明第一次调用,初始化一个callc := new(call)// wg添加,后续其他协程在该wg上阻塞c.wg.Add()// 保存key和call的关系g.m[key] = cg.mu.Unlock()// 真正执行fn函数g.doCall(c, key, fn)return c.val, c.err, c.dups >
}func (g *Group) doCall(c *call, key string, fn func() (interface{}, error)) {normalReturn := falserecovered := false// 第三步、最后的设置和清理工作defer func() {// ...g.mu.Lock()defer g.mu.Unlock()// 执行完成,调用wg.Done,其他协程此时不再阻塞,读到fn执行结果c.wg.Done()// 二次校验map中key的值是否为当前call,并删除该keyif g.m[key] == c {delete(g.m, key)}// ...// 如果c.chans存在,则遍历并写入执行结果for _, ch := range c.chans {ch <- Result{c.val, c.err, c.dups >}}}}()// 第一步、执行fn获取结果func() {//、如果fn执行过程中panic,将c.err设置为PanicErrordefer func() {if !normalReturn {if r := recover(); r != nil {c.err = newPanicError(r)}}}()//、执行fn,获取到执行结果c.val, c.err = fn()//、设置正常返回结果标识normalReturn = true}()// 第二步、fn执行出错,将recovered标识设置为trueif !normalReturn {recovered = true}
}

func (g *Group) DoChan(key string, fn func() (interface{}, error)) <-chan Result

func (g *Group) DoChan(key string, fn func() (interface{}, error)) <-chan Result {// 一次调用对应一个chanch := make(chan Result,)g.mu.Lock()if g.m == nil {// 第一次调用,初始化mapg.m = make(map[string]*call)}// 后续调用,已存在keyif c, ok := g.m[key]; ok {// 调用次数自增c.dups++// 将chan添加到chans列表c.chans = append(c.chans, ch)g.mu.Unlock()// 直接返回chan,不等待fn执行完成return ch}// 第一次调用,初始化call及chans列表c := &call{chans: []chan<- Result{ch}}// wg加一c.wg.Add()// 保存key及call的关系g.m[key] = cg.mu.Unlock()// 异步执行fn函数go g.doCall(c, key, fn)// 直接返回该chanreturn ch
}

3.总结

  • singleflight经常和缓存获取配合使用,可以缓解缓存击穿问题,避免同一时刻单机大量的并发调用获取数据库构建缓存
  • singleflight的实现很精简,核心流程就是使用map保存每次调用的key与call的映射关系,每个call中通过wg控制只存在一个协程执行fn函数,其他协程等待执行完成后,直接获取执行结果,在执行完成后会删去map中的key
  • singleflight的Do方法会阻塞直到fn执行完成,DoChan方法不会阻塞,而是异步执行fn,并通过通道来实现结果的通知

这篇关于Golang源码分析之golang/sync之singleflight的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/346237

相关文章

golang获取prometheus数据(prometheus/client_golang包)

《golang获取prometheus数据(prometheus/client_golang包)》本文主要介绍了使用Go语言的prometheus/client_golang包来获取Prometheu... 目录1. 创建链接1.1 语法1.2 完整示例2. 简单查询2.1 语法2.2 完整示例3. 范围值

MySQL表锁、页面锁和行锁的作用及其优缺点对比分析

《MySQL表锁、页面锁和行锁的作用及其优缺点对比分析》MySQL中的表锁、页面锁和行锁各有特点,适用于不同的场景,表锁锁定整个表,适用于批量操作和MyISAM存储引擎,页面锁锁定数据页,适用于旧版本... 目录1. 表锁(Table Lock)2. 页面锁(Page Lock)3. 行锁(Row Lock

golang panic 函数用法示例详解

《golangpanic函数用法示例详解》在Go语言中,panic用于触发不可恢复的错误,终止函数执行并逐层向上触发defer,最终若未被recover捕获,程序会崩溃,recover用于在def... 目录1. panic 的作用2. 基本用法3. recover 的使用规则4. 错误处理建议5. 常见错

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck