HFSS谐振腔体分析

2023-11-04 23:30
文章标签 分析 hfss 谐振腔

本文主要是介绍HFSS谐振腔体分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

内容概述

主要通过一个圆柱形介质谐振腔的分析设计实例,详细讲解如何使用HFSS中的本征模求解器分析设计谐振腔体一类的问题。学习中需要重点关注使用本征模求解器时,模式数的概念,以及在分析多个模式时,如何查看各个模式的谐振频率、品质因数和场分布。

圆柱形腔体谐振器简介

微波腔体谐振器是由导体制成的封闭的空腔,电磁波在其中连续反射,如果模式和频率合适,就会产生驻波,即发生谐振现象。

微波谐振器的主要参数由两个:谐振频率或谐振波长和品质因数Q。

使用HFSS分析圆形腔体谐振器,由理论分析可知,当圆柱形腔体长度等于半径,即TM_{010}l=a时,TM_{010}是最低次模,TM_{111}是次低次模,且二者的谐振波长分别为:

\lambda_{TM_{010}}=2.62a\lambda_{TE_{111}}=\frac{1}{\sqrt{\left(\frac{1}{3.41a} \right )^2+\left(\frac{1}{2l} \right )^2}}

TM_{010}模的谐振波长与腔体长度无关,无法利用调节谐振腔长度的方法进行调谐,但在圆柱轴线方向引入一段细圆柱形导体或细圆柱形介质,可以使TM_{010}模场的分布发生变化,通过改变细圆柱形导体/介质的长度,可以实现谐振腔的调谐。

HFSS设计概述

使用HFSS分析设计一个圆形腔体谐振器,腔体的长度和截面半径都为15mm,腔体的外壁材质是厚度为1mm的金属率。根据上面的公式可以计算出谐振腔TM_{010}模和TM_{111}模波长和频率的理论值分别为:

\lambda_{TM_{010}}=39.3mm;f_{TM_{010}}=7.634GHz

\lambda_{TM_{111}}=25.88mm;f_{TM_{111}=11.592GHz\lambda_{TM_{010}}=39.3mm ;f_{TM_{010}}=37.634GHz

首先我们在HFSS中创建该腔体模型,仿真计算出TM_{010}模和TM_{111}模谐振频率的实际值和品质因数Q值,并查看TM_{010}模和TM_{111}模的场分布;

然后再圆形谐振腔体内部添加一个半径为5mm的介质圆柱,使用HFSS的参数扫描功能,分析介质圆柱的高度对TM_{010}模和TM_{111}模谐振频率的影响

HFSS设计步骤和设计流程

新建工程并设置求解类型

对于谐振腔体问题的分析,需要选择本征模求解类型

腔体建模和边界条件设置

创建一个地面圆心位于坐标原点,地面半径为15mm,高度为15mm的圆柱体模型,作为圆形谐振腔体,命名为Cavity。

圆形腔体的外壁材料是厚度1mm的金属铝,在HFSS中可以通过给腔体外壁分配有限导体边界条件来实现

在HFSS中,使用本征模求解类型的问题,都不需要设置端口激励。因此,本例中无需设置立即

求解设置

最小求解频率为3GHz,最大迭代次数为20次,收敛误差为2.5%,求解的模式数为2

设计检查和运行仿真分析

查看结果分析

谐振频率和品质因素Q

腔体内部TM_{010}模和TM_{111}模电场和磁场的分布

参数扫描分析

在腔体内部添加一个细介质圆柱,介质圆柱的横截面半径为5mm,通过改变介质圆柱的高度来改变腔体的谐振频率,使用HFSS的参数扫描功能来分析腔体的谐振频率和介质圆柱高度之间的关系。

 

 

 

 

 

 

 

 

 

 

 

 

 

这篇关于HFSS谐振腔体分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/345904

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置