遥感LAI一些记录

2023-11-04 06:50
文章标签 遥感 记录 lai

本文主要是介绍遥感LAI一些记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

(一)遥感数据
(二)文献

(一)数据

1.全球十九大主流卫星遥感数据下载平台

2.国家遥感中心

3.美国对地观测系统卫星资料产品及服务

NASA EOS分布式数据存档中心包括:

  1. 阿拉斯加卫星研究室分布式数据存档中心(ASF DAAC)
  2. GSFC地球科学数据信息服务中心分布式数据存档中心(GESDISCDACC)
  3. 全球水资源中心分布式数据存档中心(GHRC DAAC)
  4. 陆面过程资料分布式数据存档中心(LP DAAC)
  5. 兰利大气科学资料分布式数据存档中心(LaRC DAAC)
  6. 国家冰雪资料中心分布式数据存档中心(NSIDC DAAC)
  7. 橡树岭国家实验室分布式数据存档中心(ORNL DAAC)
  8. 海洋物理学分布式数据存档中心(PO DAAC)
  9. 社会经济学数据与应用中心(SEDAC)
3.1 ORNL DAAC Americanflux site modis LAI产品下载网址
  1. 数据格式说明
    (1) MCD14A3H-4day数据产品质量说明
    在这里插入图片描述
    (2) MOD09A1产品说明
    (3) NASA MODIS (MCD15A3H v6)反演算法

    The radiative transfer model is based on photon transfer theory and takes into account clumping at plant and canopy level (but not shoot clumping for pines). This makes the retrieved values more comparable to ‘true LAI’ rather than ‘effective LAI’.

3.2 常用遥感LAI产品及其反演算法

[1] 《Xie, Xinyao, et al. “Assessment of five satellite-derived LAI datasets for GPP estimations through ecosystem models.” Science of The Total Environment 690 (2019): 1120-1130.》
在这里插入图片描述
[2] 《叶面积指数的遥感定量方法综述》link

  1. 统计模型法
    利用遥感定向统计分析叶面积指数的依据是植被冠层的光谱特征。(1)绿色植物叶片的叶绿素在光照条件下发生光合作用,强烈吸收可见光,尤其是红光。因此,红光波段反射率包含了植被顶层叶片的大量信息。(2)在近红外波段名植被有很高的反射率、透色率和很低的吸收率,因此,近红外反射率包含了冠层内叶片的很多信息。这就是LAI遥感定量统计分析的理论依据。

    统计分析法是以LAI为因变量,以光谱数据或其他变换形式(如植被指数)作为自变量建立的估算模型,即LAI=f(x),其中x为光谱反射率或植被指数。

  2. 光学模型法
    光学模型建立的基础是植被的非朗伯体特性,即植被对太阳光短波辐射的散射具有各项异性,反映在遥感上就是从地表反射回天空的太阳辐射和卫星观测的结果很大程度上依赖于太阳角和卫星观测角的关系,这种双向反射特性可以用双向反射率分布函数(BI-DIRECTIOAL REFLECTANCE DISTRIBUTION FUNCTION,BRDF)来定量表示,这就给LAI定向模型的创造提供了理论契机。

    光学模型就是基于植被的BRDF,它是建立在辐射传输模型基础上的一种模型,具有物理基础,不依赖植被的具体类型或背景环境的变化,因此具有普适性。

    辐射传输模型是模拟光辐射在一定介质(如大气和植被)中的传输过程,最初用于研究光辐射在大气中传输的规律,后来被移植到植被对太阳光辐射的吸收和散射规律研究中。对于某一特定时间的植被冠层而言,一般的辐射传输模型为:

    S=F(λ,Θs,Ψs,Θv,Ψv,C)

    其中,S为叶子或冠层的反射率或透射率,λ为波长,Θs,Ψs为太阳天顶角和方位角,Θv,Ψv为观测天顶角和方位角,C为一组关于植被冠层的物理参数,如植被LAI,叶面分布等。

    一般辐射传输模型以LAI等生物物理、生物化学参数作为输入值,得到的输出值是S。从数学角度看,要求得LAI,只需要得到上述函数的反函数,以S为自变量反求LAI,这就是光学模型反演LAI的基本原理。

(二)文献

  1. 王培娟 link
  2. 戴永久PPT link
  3. 梁顺林
    [1] LAI的定义和测量方法《Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product From Time-Series MODIS Surface Reflectance》

1.1 真实叶面积和有效叶面积
Leaf area index (LAI), defined as one half of the total green leaf area per unit of horizontal ground surface area [1], is often called true LAI. The true LAI multiplied by the clumping index is termed effective LAI [2].

1.2 测量方法
-There are currently two main types of methods for retrieving LAI from satellite data: empirical methods and physical methods.

1.3 方法1 经验法
The empirical methods are based on statistical relationships between LAI and spectral vegetation indexes, which are calibrated for distinct vegetation types using field measurements of LAI and reflectance data recorded by a remote sensor or simulations from canopy radiation models [3].
Sellers et al. [4] retrieved LAI from Fourier Adjusted, Solar zenith angle correction, Interpolation, and Reconstruction of Normalized Difference Vegetation Index (NDVI) data using empirical relationships derived from available field surveys.
Based on radiative transfer simulations and field surveys, Myneni et al. [5] derived biome-specific LAI–NDVI relationships and generated the corresponding LAI data sets from Pathfinder AVHRR Land and Global Inventory Modeling and Mapping Studies NDVI data.
Chen et al. [6] derived Canada-wide time series of LAI from AVHRR and SPOT-Vegetation data using the land-cover-specific SR–LAI and RSR–LAI relationships.
These empirical methods are computationally efficient in operating with a large amount of data, but they do not exploit the full spectral-directional information conveyed by the radiometric signal [7].

1.4 方法2 物理法
The physical methods are based on the inversion of canopy radiative transfer models through iterative minimization of a cost function [8], [9] or other methods.
Because the model-inversion methods can be adjusted for a wide range of situations [10], radiative transfer models are increasingly used in the inverse mode to estimate LAI from remotely sensed data. However, inversion techniques based on iterative minimization of a cost function require hundreds of runs of the canopy radiative transfer model for each pixel; therefore, they are computationally too demanding [10].

  • (1)For operational applications, look-up tables (LUTs) and artificial neural networks (ANNs) are two popular inversion techniques that are based on a pre-computed reflectance database.
    (2)The LUT methods consist of determining the distribution of pre-computed canopy realizations that minimize a given misfit function with respect to the observations. Based on the radiative-transfer-model-based LUT, Myneni et al. [11] developed an operational algorithm to retrieve LAI from Moderate-Resolution Imaging Spectroradiometer (MODIS) data, and global LAI products have been generated from Terra and Aqua MODIS data with this algorithm since 2000.
    (3) ANNs are well known for their good performance in classification and function approximation. They are very efficient from a computational point of view, which is particularly important for operational applications with a long time series of global data. Currently, neural networks are increasingly being used for the estimation of LAI from remotely sensed data [3], [12]. Fang and Liang [13] demonstrated a neural network algorithm for retrieving LAI from the Landsat-7 Enhanced Thematic Mapper Plus surface reflectance and TOA radiance. Bacour et al. [8] developed an operational algorithm based on neural networks to estimate LAI, fAPAR, fCover, and LAI ×Cab from MERIS top-of-canopy observations. Baret et al. [14] developed an algorithm for generating LAI, fAPAR, and fCover estimates from VEGETATION observations based on training neural networks with SAIL +PROSPECT radiative transfer model simulations for each biophysical variable. Verger et al. [15] evaluated the performance of a neural network approach to estimating LAI from CYCLOPES and MODIS nadir-normalized reflectance and LAI products. The neural networks were trained with the LAI products from one sensor and the reflectance from another.

1.5 MODIS LAI反演算法
(1)主要算法和备用算法 The MODIS LAI retrieval algorithm includes a main algorithm and a backup algorithm. When the main algorithm fails, the backup algorithm is used to estimate LAI from biome-specific LAI–NDVI relationship.

(2)MODISLAI是真实叶面积 The MODIS LAI retrieval algorithm accounts for vegetation clumping at the canopy and plant (shoot) scales through 3-D radiative transfer formulations. Since the clumping values at landscape scale is not gathered as a function of biomes, it is partly addressed via mechanisms based on the radiative transfer theory of canopy spectral invariants in the MODIS LAI retrieval algorithm [22], [25]. Therefore, the MODIS LAI retrieval algorithm provides a true LAI.

  1. 陈镜明
    [1] 《Leaf area index of boreal forests: Theory, techniques, and measurements》

这篇关于遥感LAI一些记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/343999

相关文章

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

Spring Retry 实现乐观锁重试实践记录

《SpringRetry实现乐观锁重试实践记录》本文介绍了在秒杀商品SKU表中使用乐观锁和MybatisPlus配置乐观锁的方法,并分析了测试环境和生产环境的隔离级别对乐观锁的影响,通过简单验证,... 目录一、场景分析 二、简单验证 2.1、可重复读 2.2、读已提交 三、最佳实践 3.1、配置重试模板