本文主要是介绍Linux虚拟网络设备之tun/tap和veth设备的特点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
在现在的云时代,到处都是虚拟机和容器,它们背后的网络管理都离不开虚拟网络设备,所以了解虚拟网络设备有利于我们更好的理解云时代的网络结构。从本篇开始,将介绍Linux下的虚拟网络设备。
虚拟设备和物理设备的区别
在Linux网络数据包的接收过程和数据包的发送过程这两篇文章中,介绍了数据包的收发流程,知道了Linux内核中有一个网络设备管理层,处于网络设备驱动和协议栈之间,负责衔接它们之间的数据交互。驱动不需要了解协议栈的细节,协议栈也不需要了解设备驱动的细节。
对于一个网络设备来说,就像一个管道(pipe)一样,有两端,从其中任意一端收到的数据将从另一端发送出去。
比如一个物理网卡eth0,它的两端分别是内核协议栈(通过内核网络设备管理模块间接的通信)和外面的物理网络,从物理网络收到的数据,会转发给内核协议栈,而应用程序从协议栈发过来的数据将会通过物理网络发送出去。
那么对于一个虚拟网络设备呢?首先它也归内核的网络设备管理子系统管理,对于Linux内核网络设备管理模块来说,虚拟设备和物理设备没有区别,都是网络设备,都能配置IP,从网络设备来的数据,都会转发给协议栈,协议栈过来的数据,也会交由网络设备发送出去,至于是怎么发送出去的,发到哪里去,那是设备驱动的事情,跟Linux内核就没关系了,所以说虚拟网络设备的一端也是协议栈,而另一端是什么取决于虚拟网络设备的驱动实现。
tun/tap的另一端是什么?
先看图再说话:
+----------------------------------------------------------------+ | | | +--------------------+ +--------------------+ | | | User Application A | | User Application B |<-----+ | | +--------------------+ +--------------------+ | | | | 1 | 5 | | |...............|......................|...................|.....| | ↓ ↓ | | | +----------+ +----------+ | | | | socket A | | socket B | | | | +----------+ +----------+ | | | | 2 | 6 | | |.................|.................|......................|.....| | ↓ ↓ | | | +------------------------+ 4 | | | | Newwork Protocol Stack | | | | +------------------------+ | | | | 7 | 3 | | |................|...................|.....................|.....| | ↓ ↓ | | | +----------------+ +----------------+ | | | | eth0 | | tun0 | | | | +----------------+ +----------------+ | | | 10.32.0.11 | | 192.168.3.11 | | | | 8 +---------------------+ | | | | +----------------|-----------------------------------------------+↓Physical Network
上图中有两个应用程序A和B,都在用户层,而其它的socket、协议栈(Newwork Protocol Stack)和网络设备(eth0和tun0)部分都在内核层,其实socket是协议栈的一部分,这里分开来的目的是为了看的更直观。
tun0是一个Tun/Tap虚拟设备,从上图中可以看出它和物理设备eth0的差别,它们的一端虽然都连着协议栈,但另一端不一样,eth0的另一端是物理网络,这个物理网络可能就是一个交换机,而tun0的另一端是一个用户层的程序,协议栈发给tun0的数据包能被这个应用程序读取到,并且应用程序能直接向tun0写数据。
这里假设eth0配置的IP是10.32.0.11,而tun0配置的IP是192.168.3.11.
这里列举的是一个典型的tun/tap设备的应用场景,发到192.168.3.0/24网络的数据通过程序B这个隧道,利用10.32.0.11发到远端网络的10.33.0.1,再由10.33.0.1转发给相应的设备,从而实现VPN。
下面来看看数据包的流程:
-
应用程序A是一个普通的程序,通过socket A发送了一个数据包,假设这个数据包的目的IP地址是192.168.3.1
-
socket将这个数据包丢给协议栈
-
协议栈根据数据包的目的IP地址,匹配本地路由规则,知道这个数据包应该由tun0出去,于是将数据包交给tun0
-
tun0收到数据包之后,发现另一端被进程B打开了,于是将数据包丢给了进程B
-
进程B收到数据包之后,做一些跟业务相关的处理,然后构造一个新的数据包,将原来的数据包嵌入在新的数据包中,最后通过socket B将数据包转发出去,这时候新数据包的源地址变成了eth0的地址,而目的IP地址变成了一个其它的地址,比如是10.33.0.1.
-
socket B将数据包丢给协议栈
-
协议栈根据本地路由,发现这个数据包应该要通过eth0发送出去,于是将数据包交给eth0
-
eth0通过物理网络将数据包发送出去
10.33.0.1收到数据包之后,会打开数据包,读取里面的原始数据包,并转发给本地的192.168.3.1,然后等收到192.168.3.1的应答后,再构造新的应答包,并将原始应答包封装在里面,再由原路径返回给应用程序B,应用程序B取出里面的原始应答包,最后返回给应用程序A
这里不讨论Tun/Tap设备tun0是怎么和用户层的进程B进行通信的,对于Linux内核来说,有很多种办法来让内核空间和用户空间的进程交换数据。
从上面的流程中可以看出,数据包选择走哪个网络设备完全由路由表控制,所以如果我们想让某些网络流量走应用程序B的转发流程,就需要配置路由表让这部分数据走tun0。
un/tap设备有什么用?
从上面介绍过的流程可以看出来,tun/tap设备的用处是将协议栈中的部分数据包转发给用户空间的应用程序,给用户空间的程序一个处理数据包的机会。于是比较常用的数据压缩,加密等功能就可以在应用程序B里面做进去,tun/tap设备最常用的场景是VPN,包括tunnel以及应用层的IPSec等,比较有名的项目是VTun,有兴趣可以去了解一下。
tun和tap的区别
用户层程序通过tun设备只能读写IP数据包,而通过tap设备能读写链路层数据包,类似于普通socket和raw socket的差别一样,处理数据包的格式不一样。
veth设备的特点
- veth和其它的网络设备都一样,一端连接的是内核协议栈。
- veth设备是成对出现的,另一端两个设备彼此相连
- 一个设备收到协议栈的数据发送请求后,会将数据发送到另一个设备上去。
下面这张关系图很清楚的说明了veth设备的特点:
+----------------------------------------------------------------+ | | | +------------------------------------------------+ | | | Newwork Protocol Stack | | | +------------------------------------------------+ | | ↑ ↑ ↑ | |..............|...............|...............|.................| | ↓ ↓ ↓ | | +----------+ +-----------+ +-----------+ | | | eth0 | | veth0 | | veth1 | | | +----------+ +-----------+ +-----------+ | |192.168.1.11 ↑ ↑ ↑ | | | +---------------+ | | | 192.168.2.11 192.168.2.1 | +--------------|-------------------------------------------------+↓Physical Network
上图中,我们给物理网卡eth0配置的IP为192.168.1.11, 而veth0和veth1的IP分别是192.168.2.11和192.168.2.1。
我们通过示例的方式来一步一步的看看veth设备的特点。
只给一个veth设备配置IP
先通过ip link命令添加veth0和veth1,然后配置veth0的IP,并将两个设备都启动起来
dev@debian:~$ sudo ip link add veth0 type veth peer name veth1
dev@debian:~$ sudo ip addr add 192.168.2.11/24 dev veth0
dev@debian:~$ sudo ip link set veth0 up
dev@debian:~$ sudo ip link set veth1 up
这里不给veth1设备配置IP的原因就是想看看在veth1没有IP的情况下,veth0收到协议栈的数据后会不会转发给veth1。
ping一下192.168.2.1,由于veth1还没配置IP,所以肯定不通
dev@debian:~$ ping -c 4 192.168.2.1
PING 192.168.2.1 (192.168.2.1) 56(84) bytes of data.
From 192.168.2.11 icmp_seq=1 Destination Host Unreachable
From 192.168.2.11 icmp_seq=2 Destination Host Unreachable
From 192.168.2.11 icmp_seq=3 Destination Host Unreachable
From 192.168.2.11 icmp_seq=4 Destination Host Unreachable--- 192.168.2.1 ping statistics ---
4 packets transmitted, 0 received, +4 errors, 100% packet loss, time 3015ms
pipe 3
但为什么ping不通呢?是到哪一步失败的呢?
先看看抓包的情况,从下面的输出可以看出,veth0和veth1收到了同样的ARP请求包,但没有看到ARP应答包:
dev@debian:~$ sudo tcpdump -n -i veth0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on veth0, link-type EN10MB (Ethernet), capture size 262144 bytes
20:20:18.285230 ARP, Request who-has 192.168.2.1 tell 192.168.2.11, length 28
20:20:19.282018 ARP, Request who-has 192.168.2.1 tell 192.168.2.11, length 28
20:20:20.282038 ARP, Request who-has 192.168.2.1 tell 192.168.2.11, length 28
20:20:21.300320 ARP, Request who-has 192.168.2.1 tell 192.168.2.11, length 28
20:20:22.298783 ARP, Request who-has 192.168.2.1 tell 192.168.2.11, length 28
20:20:23.298923 ARP, Request who-has 192.168.2.1 tell 192.168.2.11, length 28dev@debian:~$ sudo tcpdump -n -i veth1
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on veth1, link-type EN10MB (Ethernet), capture size 262144 bytes
20:20:48.570459 ARP, Request who-has 192.168.2.1 tell 192.168.2.11, length 28
20:20:49.570012 ARP, Request who-has 192.168.2.1 tell 192.168.2.11, length 28
20:20:50.570023 ARP, Request who-has 192.168.2.1 tell 192.168.2.11, length 28
20:20:51.570023 ARP, Request who-has 192.168.2.1 tell 192.168.2.11, length 28
20:20:52.569988 ARP, Request who-has 192.168.2.1 tell 192.168.2.11, length 28
20:20:53.570833 ARP, Request who-has 192.168.2.1 tell 192.168.2.11, length 28
为什么会这样呢?了解ping背后发生的事情后就明白了:
- ping进程构造ICMP echo请求包,并通过socket发给协议栈,
- 协议栈根据目的IP地址和系统路由表,知道去192.168.2.1的数据包应该要由192.168.2.11口出去
- 由于是第一次访问192.168.2.1,且目的IP和本地IP在同一个网段,所以协议栈会先发送ARP出去,询问192.168.2.1的mac地址
- 协议栈将ARP包交给veth0,让它发出去
- 由于veth0的另一端连的是veth1,所以ARP请求包就转发给了veth1
- veth1收到ARP包后,转交给另一端的协议栈
- 协议栈一看自己的设备列表,发现本地没有192.168.2.1这个IP,于是就丢弃了该ARP请求包,这就是为什么只能看到ARP请求包,看不到应答包的原因
给两个veth设备都配置IP
给veth1也配置上IP
dev@debian:~$ sudo ip addr add 192.168.2.1/24 dev veth1
再ping 192.168.2.1成功(由于192.168.2.1是本地IP,所以默认会走lo设备,为了避免这种情况,这里使用ping命令带上了-I参数,指定数据包走指定设备)
dev@debian:~$ ping -c 4 192.168.2.1 -I veth0
PING 192.168.2.1 (192.168.2.1) from 192.168.2.11 veth0: 56(84) bytes of data.
64 bytes from 192.168.2.1: icmp_seq=1 ttl=64 time=0.032 ms
64 bytes from 192.168.2.1: icmp_seq=2 ttl=64 time=0.048 ms
64 bytes from 192.168.2.1: icmp_seq=3 ttl=64 time=0.055 ms
64 bytes from 192.168.2.1: icmp_seq=4 ttl=64 time=0.050 ms--- 192.168.2.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3002ms
rtt min/avg/max/mdev = 0.032/0.046/0.055/0.009 ms
注意:对于非debian系统,这里有可能ping不通,主要是因为内核中的一些ARP相关配置导致veth1不返回ARP应答包,如ubuntu上就会出现这种情况,解决办法如下:
root@ubuntu:~# echo 1 > /proc/sys/net/ipv4/conf/veth1/accept_local
root@ubuntu:~# echo 1 > /proc/sys/net/ipv4/conf/veth0/accept_local
root@ubuntu:~# echo 0 > /proc/sys/net/ipv4/conf/all/rp_filter
root@ubuntu:~# echo 0 > /proc/sys/net/ipv4/conf/veth0/rp_filter
root@ubuntu:~# echo 0 > /proc/sys/net/ipv4/conf/veth1/rp_filter
再来看看抓包情况,我们在veth0和veth1上都看到了ICMP echo的请求包,但为什么没有应答包呢?上面不是显示ping进程已经成功收到了应答包吗?
dev@debian:~$ sudo tcpdump -n -i veth0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on veth0, link-type EN10MB (Ethernet), capture size 262144 bytes
20:23:43.113062 IP 192.168.2.11 > 192.168.2.1: ICMP echo request, id 24169, seq 1, length 64
20:23:44.112078 IP 192.168.2.11
> 192.168.2.1: ICMP echo request, id 24169, seq 2, length 64
20:23:45.111091 IP 192.168.2.11 > 192.168.2.1: ICMP echo request, id 24169, seq 3, length 64
20:23:46.110082 IP 192.168.2.11 > 192.168.2.1: ICMP echo request, id 24169, seq 4, length 64dev@debian:~$ sudo tcpdump -n -i veth1
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on veth1, link-type EN10MB (Ethernet), capture size 262144 bytes
20:24:12.221372 IP 192.168.2.11 > 192.168.2.1: ICMP echo request, id 24174, seq 1, length 64
20:24:13.222089 IP 192.168.2.11 > 192.168.2.1: ICMP echo request, id 24174, seq 2, length 64
20:24:14.224836 IP 192.168.2.11 > 192.168.2.1: ICMP echo request, id 24174, seq 3, length 64
20:24:15.223826 IP 192.168.2.11 > 192.168.2.1: ICMP echo request, id 24174, seq 4, length 64
看看数据包的流程就明白了:
- ping进程构造ICMP echo请求包,并通过socket发给协议栈,
- 由于ping程序指定了走veth0,并且本地ARP缓存里面已经有了相关记录,所以不用再发送ARP出去,协议栈就直接将该数据包交给了veth0
- 由于veth0的另一端连的是veth1,所以ICMP echo请求包就转发给了veth1
- veth1收到ICMP echo请求包后,转交给另一端的协议栈
- 协议栈一看自己的设备列表,发现本地有192.168.2.1这个IP,于是构造ICMP echo应答包,准备返回
- 协议栈查看自己的路由表,发现回给192.168.2.11的数据包应该走lo口,于是将应答包交给lo设备
- lo接到协议栈的应答包后,啥都没干,转手又把数据包还给了协议栈(相当于协议栈通过发送流程把数据包给lo,然后lo再将数据包交给协议栈的接收流程)
- 协议栈收到应答包后,发现有socket需要该包,于是交给了相应的socket
- 这个socket正好是ping进程创建的socket,于是ping进程收到了应答包
抓一下lo设备上的数据,发现应答包确实是从lo口回来的:
dev@debian:~$ sudo tcpdump -n -i lo
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on lo, link-type EN10MB (Ethernet), capture size 262144 bytes
20:25:49.590273 IP 192.168.2.1 > 192.168.2.11: ICMP echo reply, id 24177, seq 1, length 64
20:25:50.590018 IP 192.168.2.1 > 192.168.2.11: ICMP echo reply, id 24177, seq 2, length 64
20:25:51.590027 IP 192.168.2.1 > 192.168.2.11: ICMP echo reply, id 24177, seq 3, length 64
20:25:52.590030 IP 192.168.2.1 > 192.168.2.11: ICMP echo reply, id 24177, seq 4, length 64
试着ping下其它的IP
ping 192.168.2.0/24网段的其它IP失败,ping一个公网的IP也失败:
dev@debian:~$ ping -c 1 -I veth0 192.168.2.2
PING 192.168.2.2 (192.168.2.2) from 192.168.2.11 veth0: 56(84) bytes of data.
From 192.168.2.11 icmp_seq=1 Destination Host Unreachable--- 192.168.2.2 ping statistics ---
1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0msdev@debian:~$ ping -c 1 -I veth0 baidu.com
PING baidu.com (111.13.101.208) from 192.168.2.11 veth0: 56(84) bytes of data.
From 192.168.2.11 icmp_seq=1 Destination Host Unreachable--- baidu.com ping statistics ---
1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms
从抓包来看,和上面第一种veth1没有配置IP的情况是一样的,ARP请求没人处理
dev@debian:~$ sudo tcpdump -i veth1
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on veth1, link-type EN10MB (Ethernet), capture size 262144 bytes
02:25:23.223947 ARP, Request who-has 192.168.2.2 tell 192.168.2.11, length 28
02:25:24.224352 ARP, Request who-has 192.168.2.2 tell 192.168.2.11, length 28
02:25:25.223471 ARP, Request who-has 192.168.2.2 tell 192.168.2.11, length 28
02:25:27.946539 ARP, Request who-has 123.125.114.144 tell 192.168.2.11, length 28
02:25:28.946633 ARP, Request who-has 123.125.114.144 tell 192.168.2.11, length 28
02:25:29.948055 ARP, Request who-has 123.125.114.144 tell 192.168.2.11, length 28
结束语
从上面的介绍中可以看出,从veth0设备出去的数据包,会转发到veth1上,如果目的地址是veth1的IP的话,就能被协议栈处理,否则连ARP那关都过不了,IP forward啥的都用不上,所以不借助其它虚拟设备的话,这样的数据包只能在本地协议栈里面打转转,没法走到eth0上去,即没法发送到外面的网络中去。
下一篇将介绍Linux下的网桥,到时候veth设备就有用武之地了。
这篇关于Linux虚拟网络设备之tun/tap和veth设备的特点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!