DPDK实战之l3fwd-vf(虚拟化环境)

2023-11-03 23:30

本文主要是介绍DPDK实战之l3fwd-vf(虚拟化环境),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一. 介绍

在虚拟化环境下的L3层转发应用是用DPDK处理数据包的一个简单例子。这个L3层转发应用充分发挥SR-IOV的特征。

这个应用演示如何使用hash和LPM DPDK库去实现数据包转发。这个转发策略是基于输入包的信息。

查询方法既有基于hash的也有基于LPM的,你如何选择在编译的时候决定。当所选择的查找方法是基于hash时,使用hash对象来模拟流分类阶段。 哈希对象与流表相关使用,以便在运行时将每个输入数据包映射到其流。

哈希查询键由DiffServ 5元组表示,它由从输入数据包读取的以下字段组成:源IP地址,目标IP地址,协议,源端口和目标端口。 从识别的流表条目读取输入数据包的输出接口的ID。应用程序使用的一组流在初始化时静态配置并加载到散列中。 当选择的查找方法是基于LPM时,使用LPM对象来模拟IPv4分组的转发阶段。 LPM对象用作路由表,用于在运行时识别每个输入数据包的下一跳。

LPM查找键由从输入数据包读取的目标IP地址字段表示。 输入数据包的输出接口的ID是LPM查询返回的下一跳。应用程序使用的一组LPM规则在初始化时被静态配置并加载到LPM对象中。

二. 运行环境

运行参数样板:

      ./build/l3fwd-vf [EAL options] -- -p PORTMASK --config(port,queue,lcore)[,(port,queue,lcore)]

参数解释:

[EAL options] EAL选项已经在其他例子中已有说明。

-p [端口掩码 -- 网卡掩码,在部署DPDK运行环境时绑定的网卡]: 十六进制表示

--config: 哪个网口哪个队列绑定到哪个逻辑核

–no-numa: 是否关闭对numa结构的识别

运行实例:

      ./l3fwd-vf -l 1,2 -n 4 -- -p 0x3 --config="(0,0,1),(1,0,2)"

-这个实例占用的逻辑核为1,2

-启动1、2号网卡

-端口映射关系为:

0号网卡0号队列映射到1号逻辑核上;

1号网卡0号队列映射到2号逻辑核上;

运行效果如下(添加了一些提示信息):

LPM作为路由查询表:

<span style="font-size:18px;">Initializing port 0 ... Creating queues: nb_rxq=1 nb_txq=1...  Address:A0:36:9F:03:A8:CA, Allocated mbuf pool on socket 0
LPM: Adding route 0x01010100 / 24 (0)
LPM: Adding route 0x02010100 / 24 (1)
LPM: Adding route 0x03010100 / 24 (2)
LPM: Adding route 0x04010100 / 24 (3)
LPM: Adding route 0x05010100 / 24 (4)
LPM: Adding route 0x06010100 / 24 (5)
LPM: Adding route 0x07010100 / 24 (6)
LPM: Adding route 0x08010100 / 24 (7)
txq=0,0,0 PMD: eth_igb_tx_queue_setup(): sw_ring=0x7ffc3814d2c0 hw_ring=0x7ffc3814f300 dma_addr=0x6734f300Initializing port 1 ... Creating queues: nb_rxq=1 nb_txq=1...  Address:A0:36:9F:03:A8:CB, txq=1,0,0 PMD: eth_igb_tx_queue_setup(): sw_ring=0x
7ffc3813b040 hw_ring=0x7ffc3813d080 dma_addr=0x6733d080Initializing rx queues on lcore 1 ... rxq=0,0,0 PMD: eth_igb_rx_queue_setup(): sw_ring=0x7ffc3812aac0 hw_ring=0x7ffc3812af00 dma_addr=0x6732a
f00
Initializing rx queues on lcore 2 ... rxq=1,0,0 PMD: eth_igb_rx_queue_setup(): sw_ring=0x7ffc3811a540 hw_ring=0x7ffc3811a980 dma_addr=0x6731a
980
PMD: eth_igb_start(): <<
done: Port 0
PMD: eth_igb_start(): <<
done: Port 1
L3FWD: entering main loop on lcore 2
L3FWD:  -- lcoreid=2 portid=1 rxqueueid=0
L3FWD: entering main loop on lcore 1
L3FWD:  -- lcoreid=1 portid=0 rxqueueid=0</span>

Hash作为路由查询表:

<span style="font-size:18px;">Initializing port 0 ... Creating queues: nb_rxq=1 nb_txq=1...  Address:A0:36:9F:03:A8:CA, Allocated mbuf pool on socket 0
Hash: Adding key
IP dst = 640a0001, IP src = c80a0001, port dst = 101, port src = 11, proto = 6
Hash: Adding key
IP dst = 64140002, IP src = c8140002, port dst = 102, port src = 12, proto = 6
Hash: Adding key
IP dst = 641e0003, IP src = c81e0003, port dst = 103, port src = 13, proto = 6
Hash: Adding key
IP dst = 64280004, IP src = c8280004, port dst = 104, port src = 14, proto = 6
txq=0,0,0 PMD: eth_igb_tx_queue_setup(): sw_ring=0x7fd48af7fcc0 hw_ring=0x7fd48af81d00 dma_addr=0x67381d00Initializing port 1 ... Creating queues: nb_rxq=1 nb_txq=1...  Address:A0:36:9F:03:A8:CB, txq=1,0,0 PMD: eth_igb_tx_queue_setup(): sw_ring=0x
7fd48af6da40 hw_ring=0x7fd48af6fa80 dma_addr=0x6736fa80Initializing rx queues on lcore 1 ... rxq=0,0,0 PMD: eth_igb_rx_queue_setup(): sw_ring=0x7fd48af5d4c0 hw_ring=0x7fd48af5d900 dma_addr=0x6735d
900
Initializing rx queues on lcore 2 ... rxq=1,0,0 PMD: eth_igb_rx_queue_setup(): sw_ring=0x7fd48af4cf40 hw_ring=0x7fd48af4d380 dma_addr=0x6734d
380
PMD: eth_igb_start(): <<
done: Port 0
PMD: eth_igb_start(): <<
done: Port 1
L3FWD: entering main loop on lcore 2
L3FWD:  -- lcoreid=2 portid=1 rxqueueid=0
L3FWD: entering main loop on lcore 1
L3FWD:  -- lcoreid=1 portid=0 rxqueueid=0</span>

模拟发包去查询(添加一些实际输出):

绑定两个网口0,1,连接到另一台服务器,另一台服务器抓包,分析数据包修改的情况,运行效果如下:

数据包分析:

三. 整体源码分析

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <signal.h>#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_spinlock.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_string_fns.h>#define APP_LOOKUP_EXACT_MATCH          0     //精确匹配算法 
#define APP_LOOKUP_LPM                  1     //最长匹配算法
#define DO_RFC_1812_CHECKS                    //校验检查 如ip头的合法性//#define APP_LOOKUP_METHOD             APP_LOOKUP_EXACT_MATCH  //使用何种查询表
#ifndef APP_LOOKUP_METHOD
#define APP_LOOKUP_METHOD             APP_LOOKUP_LPM
#endif/* 下面是一些相关头文件 */
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
#include <rte_hash.h>
#elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
#include <rte_lpm.h>
#else
#error "APP_LOOKUP_METHOD set to incorrect value"
#endif#define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1/* 内存池缓存大小 */
#define MEMPOOL_CACHE_SIZE 256/** 该表达式用于根据用户输入计算所需的mbufs数,考虑到rx和tx硬件环的内存,每lcore的缓存和每个端口的mtable .* RTE_MAX用于确保NB_MBUF不会低于最小值 8192。*/#define NB_MBUF RTE_MAX	(																	\(nb_ports*nb_rx_queue*RTE_TEST_RX_DESC_DEFAULT +							\nb_ports*nb_lcores*MAX_PKT_BURST +											\nb_ports*n_tx_queue*RTE_TEST_TX_DESC_DEFAULT +								\nb_lcores*MEMPOOL_CACHE_SIZE),												\(unsigned)8192)/**应优先设置RX和TX预取,主机和写回阈值以获得最佳性

这篇关于DPDK实战之l3fwd-vf(虚拟化环境)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/341614

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

安装nodejs环境

本文介绍了如何通过nvm(NodeVersionManager)安装和管理Node.js及npm的不同版本,包括下载安装脚本、检查版本并安装特定版本的方法。 1、安装nvm curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.0/install.sh | bash 2、查看nvm版本 nvm --version 3、安装

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联

高并发环境中保持幂等性

在高并发环境中保持幂等性是一项重要的挑战。幂等性指的是无论操作执行多少次,其效果都是相同的。确保操作的幂等性可以避免重复执行带来的副作用。以下是一些保持幂等性的常用方法: 唯一标识符: 请求唯一标识:在每次请求中引入唯一标识符(如 UUID 或者生成的唯一 ID),在处理请求时,系统可以检查这个标识符是否已经处理过,如果是,则忽略重复请求。幂等键(Idempotency Key):客户端在每次

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

pico2 开发环境搭建-基于ubuntu

pico2 开发环境搭建-基于ubuntu 安装编译工具链下载sdk 和example编译example 安装编译工具链 sudo apt install cmake gcc-arm-none-eabi libnewlib-arm-none-eabi libstdc++-arm-none-eabi-newlib 注意cmake的版本,需要在3.17 以上 下载sdk 和ex

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip