含氟废水及含氟料液深度处理——树脂吸附

2023-11-03 22:30

本文主要是介绍含氟废水及含氟料液深度处理——树脂吸附,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着化工技术的不断发展,吡啶成为目前杂环化合物中开发应范围最广的品种之一,作为一种重要的精细化工原料,其衍生物主要有2-甲基吡啶、3-甲基吡啶、4甲基吡啶、氯代吡啶等,主要应用于农药、医药、染料、日用化工、香料、饲料添加剂、橡胶助剂等领域。

吸附法是将含氟废水通过装有吸附剂的设备,氟与吸附剂中的其他离子或者基团交换后留在吸附剂内从而达到废水处理的方法。吸附剂通过再生恢复交换能力,从而达到经济循环利用的目的。

我司针对含氟废水的性质和处理要求,开发了特种新型树脂,具有吸附速度快、容量高、易再生等优势,能够实现对大水量废水的深度除氟,为水资源的回用提供保障。

该技术具有材料吸附容量大,运行成本低,易于再生,使用寿命长;设备运行成本低,维护费用低,操作简单等技术优势,广泛应用于化工产品生产、电池生产、冶金工业、磷肥和氟塑料生产、燃煤发电等过程中产生的废水除氟。

工程案例

山东某化工企业专业生产吡啶、2-甲基吡啶、3-甲基吡啶、3,5-二甲基吡啶、2,3-二甲基吡啶,年生产量可达14400吨。但是在生产过程中产生的含氟生化尾水达400/天,难以深度处理,委托江苏海普公司吸附处理达标后排放,系统稳定运行,废水处理数据见表2

2 废水吸附处理数据

批次

原水氟含量

吸附出水COD

1

6.760mg/L

0.06mg/L

2

6.130mg/L

0.2mg/L

3

6.130mg/L

0.15mg/L

4

6.05mg/L

0.05mg/L

5

6.10mg/L

0.07mg/L

结论

尽管用沉淀法和吸附法作为基本处理单元处理某些含氟废水可以取得一定的处理效果。但迄今为止,含氟废水仍是较难治理的工业废水之一,既要考虑处理技术的先进性,又要考虑基建投资和运行费用等方面的可行性。因而促使含氟废水处理技术主要集中在以下4个方面:高效性、适应性、经济性、清洁性。

这篇关于含氟废水及含氟料液深度处理——树脂吸附的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/341299

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

韦季李输入法_输入法和鼠标的深度融合

在数字化输入的新纪元,传统键盘输入方式正悄然进化。以往,面对实体键盘,我们常需目光游离于屏幕与键盘之间,以确认指尖下的精准位置。而屏幕键盘虽直观可见,却常因占据屏幕空间,迫使我们在操作与视野间做出妥协,频繁调整布局以兼顾输入与界面浏览。 幸而,韦季李输入法的横空出世,彻底颠覆了这一现状。它不仅对输入界面进行了革命性的重构,更巧妙地将鼠标这一传统外设融入其中,开创了一种前所未有的交互体验。 想象

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

免费也能高质量!2024年免费录屏软件深度对比评测

我公司因为客户覆盖面广的原因经常会开远程会议,有时候说的内容比较广需要引用多份的数据,我记录起来有一定难度,所以一般都用录屏工具来记录会议内容。这次我们来一起探索有什么免费录屏工具可以提高我们的工作效率吧。 1.福晰录屏大师 链接直达:https://www.foxitsoftware.cn/REC/  录屏软件录屏功能就是本职,这款录屏工具在录屏模式上提供了多种选项,可以选择屏幕录制、窗口

动手学深度学习【数据操作+数据预处理】

import osos.makedirs(os.path.join('.', 'data'), exist_ok=True)data_file = os.path.join('.', 'data', 'house_tiny.csv')with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n') # 列名f.write('NA

jenkins 插件执行shell命令时,提示“Command not found”处理方法

首先提示找不到“Command not found,可能我们第一反应是查看目标机器是否已支持该命令,不过如果相信能找到这里来的朋友估计遇到的跟我一样,其实目标机器是没有问题的通过一些远程工具执行shell命令是可以执行。奇怪的就是通过jenkinsSSH插件无法执行,经一番折腾各种搜索发现是jenkins没有加载/etc/profile导致。 【解决办法】: 需要在jenkins调用shell脚

深度优先(DFS)和广度优先(BFS)——算法

深度优先 深度优先搜索算法(英语:Depth-First-Search,DFS)是一种用于遍历或搜索树或图的算法。 沿着树的深度遍历树的节点,尽可能深的搜索树的分支,当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访

图解TCP三次握手|深度解析|为什么是三次

写在前面 这篇文章我们来讲解析 TCP三次握手。 TCP 报文段 传输控制块TCB:存储了每一个连接中的一些重要信息。比如TCP连接表,指向发送和接收缓冲的指针,指向重传队列的指针,当前的发送和接收序列等等。 我们再来看一下TCP报文段的组成结构 TCP 三次握手 过程 假设有一台客户端,B有一台服务器。最初两端的TCP进程都是处于CLOSED关闭状态,客户端A打开链接,服务器端