测度转换 (上) – 等价物转换

2023-11-03 21:50
文章标签 转换 测度 等价物

本文主要是介绍测度转换 (上) – 等价物转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文有 6097 字,42 图表截屏

建议阅读 32 分钟

0

引言

本文是金融工程系列的第十二篇

  1. 弄清量化金融十大话题 (上)

  2. 弄清量化金融十大话题 (下)

  3. 金融工程高度概览

  4. 日期生成

  5. 变量计算

  6. 模型校正

  7. 曲线构建 I - 单曲线

  8. 曲线构建 II - 多曲线 (基差)

  9. 曲线构建 III - 多曲线方法 (抵押品)

  10. 测度转换 (上) - 等价物转换

  11. 测度转换 (下) - 漂移项转换

  12. 产品估值理论

  13. 产品估值 - 解析法和数值积分法 (CF)

  14. 产品估值 - 偏微分方程有限差分法 (PDE-FD)

  15. 产品估值 - 蒙特卡洛模拟法 (MC)

  16. 产品风险理论 (AAD)

  17. 风险计量 - 敏感度 (Greeks & Sensitivities)

  18. 风险计量 - 风险价值 (VaR)

  19. 价值调整 - 凸性调整

  20. 价值调整 - Quanto 调

  21. 价值调整 - 时间调整

  22. 价值调整 - CVA

  23. 价值调整 - DVA

  24. 价值调整 - FVA

  25. 价值调整 - MVA

  26. 价值调整 - KVA

0

引言

对金融产品估值时,我们会对某些随机变量某种测度下求期望。

  1. 如果通过转换测度(测度 A 到测度 B)能减少变量个数的话,比如期望符号里从两个随机变量减少到一个随机变量,那么问题会大大简化。

  2. 简化完了问题之后,我们还需要知道剩余的随机变量的在测度 B 下的随机微分方程(漂移项改变,扩散项不变),这样才能最终完成推导。

本篇讲第一个问题(测度转换之等价物转换),下篇讲第二个问题(测度转换之漂移项转换),我知道现在你听的一头雾水,希望看完这两篇后你能明白其含义。

首先我们需要理解什么是等价物(numeraire)。

等价物就是单位。

  • 一台苹果手机价值 1,000 新币,这时等价物是新币     

  • 一辆马自达三价值 90,000 新币,这时等价物也是新币

  • 一辆马自达三价值 90 台苹果手机,这时等价物是苹果手机

大家可能会问,有人会傻到用苹果手机衡量马自达三的价值吗?的确不会,但是如果是下面这种情况呢?

  • 一个简单产品价值 1,000 新币,这时等价物是新币

  • 一个复杂产品很难直接用新币估值,但是有种方法可以快速得到它和简单产品之间的关系

  • 通过一些数学转化,得到复杂产品价值 1.5 倍简单产品,这时等价物是简单产品,而且可得复杂产品价值 1,500 新币

在金融产品估值时,选择某种等价物会大大简化其估值过程。而选择哪种就等价物需要经验了,常见的等价物有活期存款 (bank account),零息债券 (zero-coupon bond) 和年金 (annuity)。

1

基础知识

1.1

概率测度

概率测度(probability measure)就是不同状态下的概率集合。

当你投一枚硬币看正反面

  • 如果你认为硬币是公平的,那么 P(正) = P(反) = 0.5,P 就是一个概率测度。

  • 如果你认为硬币是不公平,正面比反面出现的次数多很多,大概 8 比 2 的样子,那么 Q(正) = 0.8 和 Q(反) = 0.2,Q 也就是一个概率测度。

这个壮态就是硬币是否公平。但是金融产品估值时,我们更关心的是用某个资产生成的概率密度。下面是整个故事的来龙去脉。

假设明天天气有三个状态,晴、阴、雨,以及预测三个状态发生的概率,50% 晴天,30% 阴天和 20% 雨天。现在我为你定制一个产品,它明天晴天时付你 1 元,阴天时付你 3 元,雨天时付你 2 元,你愿意以多少钱买这个产品?很简单,算出该产品未来价值的期望即可:

    产品价值 = 50%×1 + 30%×3 + 20%×2 = 1.8

                           

如果我以高于 1.8 元的价格卖给你这个产品,你不会向我买因为它高过你对它的期望价值;如果你以低于 1.8 元的价格向我买这个产品,我不会卖给你因为它低过我对它的期望价值。(为了举例简单,我们没考虑一天的折现因子,要知道明天的 1 块钱没有今天的 1 块钱值钱,好像也不对,现在负利率在瑞士和欧洲还蛮普遍的)

将上面“明天天气有 3 个状态”的例子扩展到“明天世界有 K 个状态”的例子,并把每个状态的折现因子也考虑进来。考虑两个资产 A 和 B,类比上面公式我们有:

其中

  • A(0), B(0) = A 和 B 今天的价值

  • Ak(T), Bk(T)= A 和 B 在时点 T 状态 k 下的价值

  • φk = 在时点 T 支付 1 在状态 k 下的现值 = 状态 k 发生的概率 × 折现因子

把 B 当成 A 的等价物,我们有

根据 π的表达式,我们观察到以下两点:

  1. 它严格大于 0 而且其总和为 1,因此可把一系列 π看成是一个概率测度

  2. 它里面只有 B 没有 A,所以此概率测度是由等价物资产 B 生成出来的。

将上式整理一下得到

其中 E代表在“由等价物资产 B 生成出来的概率测度”下的期望。这个公式强大之处是选择B的自由度。例如我们要估值资产 A 的价值,对某一个等价物 B 来说,在它生成的概率测度下求 Ak(T)/Bk(T) 特别简单,那么我们就把 B 当做等价物。

1.2

测度转换初体验

一个等价物对应着一个概率测度,换测度就是换等价物。这节我们想弄清楚三件事情:

  1. 两个测度之间的概率联系是什么?

  2. 两个测度之间的等价物联系是什么?

  3. 为什么要变换测度?

测度之间的概率联系

还是用投硬币的例子,公平硬币的概率测度为 P(正) = 0.5 和 P(反) = 0.5;不公平硬币的概率测度为 Q(正) = 0.8 和 Q(反) = 0.2。假设 P 和 Q 是等价的,意思就是 P 和 Q 同意什么事件是一定发生的和什么事件是不可能发生的,例如

  • P(硬币竖起来) = Q(硬币竖起来) = 0          [不可能]

  • P(正面或反面) = Q(正面或反面) = 1          [一定]

那么 P 和 Q 之间有关系吗?有!

 

假设投硬币是正面你得 1 块钱 (用 x表示),反面你得 2 块钱 (用 x表示),问你愿意出多少钱玩?算出期望值不就可以了。

假设你认为硬币是公平的,用 p和 p来代表 P(正) 和 P(反),q和 q来代表 Q(正) 和 Q(反),那么期望为

      

其中 Z = P/Q 也是个随机变量有

  • Z(正) = P(正) /Q(正) = 0.5/0.8 = 0.625

  • Z(反) = P(反) /Q(反) = 0.5/0.2 = 2.5

  • EQ[Z] = q1∙ (p1/q1) + q2 ∙(p2/q2) = 1

从上式看出,一开始我们是在 P 测度下计算 X 的期望值,而到最后我们转到的 Q 测度。奇妙之处是我们用 Q 测度可以算 P 测度的值,唯一需要知道的是 Z 的表达形式。在概率论,这个 Z 叫做拉东-尼科迪姆导数 (Radon-Nikodym, RN derivative),通常用 dP/dQ 来表示。

1.3

RN 导数

 

假设 A(t) 和 B(t) 是两个同币种的等价物,它们对应的概率测度为 Q和 QB。那么从 Q转到 Q需要的 RN 导数为

证明如下表所示。

根据鞅定价公式我们可将金融产品的现值 V(0) 表示成 V(T)/A(T) 在 QA 测度下的期望乘以 A(0):

2

概率测度

选择概率测度就是选择等价物。

2.1

风险中性测度

风险中性测度(risk-neutral measure)是写出定价公式的第一步,

  • 该测度对应的等价物是连续复利的银行存款 b(t)

  • 该测度用 Q 来表示,期望符号用 EQ 表示

银行存款 b(t) 的 SDE 满足:

我们知道 V(t)/b(t) 在 Q 测度下是鞅,因此

当我们把上面公式用到零息债时,即

那么我们有

令 t = 0,我们得到 0 点时观测的 T 时到期零息债价格(确定值)和从 T 时到 0 时的折现因子(随机值)的关系:

现在终于可以讲明零息债和折现因子之间的关系了,

  • 在随机利率假设下,零息债价格是折现因子在风险中性测度下的期望。

  • 在非随机利率假设下,零息债价格和折现因子是一样的。

两者之所以常被混淆成一样的,是因为在非随机利率假设下。

 

2.2

T-远期测度

T-远期测度(T-forward measure)的名字来由是在此测度下,远期价格或者远期利率是鞅。

  • 该测度对应的等价物是零息债 P(t, T),到期支付为 1 因此 P(T, T) = 1

  • 该测度用 QT 来表示,期望符号用 ET 表示

我们知道 V(t)/P(t, T) 在 QT 测度下是鞅,因此

在随机利率环境下,比较在 T-远期测度和风险中性测度下的定价公式:

比较上面两个公式,在 QT测度下我们只用求 1个随机变量的期望,而在 Q 测度下我们需要求 2 个随机变量的期望,因此当利率是随机变量时,转换测度是必要的。从 Q 测度转到 QT测度对应的 RN 导数为

在 QT 测度下求利率上下限(IR cap, floor)非常简单。我们拿 cap 中一期的 caplet 举例,在 T 点时的支付函数为

其中 L(U; U, T) 是在 U 点观察到的 U 点生效 T 点到期的 LIBOR,τ 是 U 到 T 之间的年限,K 是行权利率。

根据 LIBOR 定义

从上式可看出,LIBOR 可表示成两个可交易资产的商,分子是 1/τ 单位的 U 点到期和 T 点到期的零息债之差,分母是 T 点到期的零息债。那么 LIBOR 在 QT测度下是鞅。

下面来推导 caplet 公式,先从 Q 测度开始列出公式,再转换到 QT 测度,因为 caplet 支付函数中的 LIBOR 在此测度下是鞅,这样会简化推导过程(支付函数用红色表示,RN 导数用蓝色表示)。

当 L(U; U, T) 在 QT 测度下是鞅,最后一行求期望就是一个简单的 BLACK 公式的推导。

2.3

即期测度

即期测度(spot measure)在一组离散的期限结构 0= T0 < T1 < T2 < … < TN 上计算远期利率时使用,

  • 该测度对应的等价物是离散复利的银行存款 B(t)

  • 该测度用 Q来表示,期望符号用 EB 表示

为了使符号看起来简单,用 Ln(t) 代表 L(t; Tn, T­n+1)。

在 0 时点,投资 1 个货币单位在 T1 到期的零息债,那么在 T1 时点的支付为

在 T1 时点,继续将所得投资在 T2 到期的零息债,那么在 T2 时点的支付为

从 T1 到 T­n 重复以上的投资策略,我们可以得到 B(t) 其中 Tn< t ≤ Tn+1

当 max(τn) 趋近于 0,B(t) 趋近去连续复利的银行存款 b(t),这是即期测度收敛于风险中性测度。

我们知道 V(t)/B(t) 在 QB 测度下是鞅,假设 Tn < t ≤ Tn+1, Tm < T ≤ Tm+1,其中 m > n,我们有

即期测度里的一组年限结构正好是 LIBOR Market Model (LMM) 下的设置,上式中 m-n 个 Li(Ti) 就是 LMM 里面都有各自的 SDE,可用来估值 V(t)。

2.4

掉期测度

给定一组期限结构 0 ≤ T0 < T1 < … < TN,其中 τn= Tn+1 – Tn。年金(annuity)定义为从 T1 到 TN 上支付单位现金流的现值。

由于年金可看出是一组零息债的组合,因此可作为等价物,对应的测度是掉期测度。

掉期测度(swap measure)的名字来由是在此测度下,远期掉期利率(forward swap rate)是鞅。

  • 该测度对应的等价物是年金 A0,N(t)

  • 该测度用 QA 来表示,期望符号用 EA 表示

 

我们知道 V(t)/A0,N(t) 在 QA 测度下是鞅,因此

从 Q 测度转到 QA 测度对应的 RN 导数为

在 QA 测度下求利率掉期期权(IR swaption)非常简单。对标的是支付固定端掉期的期权(payer swaption),在到期日 T 时的支付函数为

其中 S0,N(T) 是远期掉期利率,等于在 T 点观察到的在 [T0, TN] 期间利率掉期的平价掉期利率(par swap rate),K 是行权利率。

根据远期掉期利率的定义

从上式可看出,远期掉期利率可表示成两个可交易资产的商,分子是 T0 点到期和 TN 点到期的零息债之差,分母是年金。那么远期掉期利率在 QA 测度下是鞅。

下面来推导掉期期权公式,先从 Q 测度开始列出公式,再转换到 QA 测度,因为掉期期权支付函数中的远期掉期利率在此测度下是鞅,这样会简化推导过程(支付函数用红色表示,RN 导数用蓝色表示)。

当 S0,N(T) 在 QA 测度下是鞅,最后一行求期望就是一个简单的 BLACK 公式的推导。

2.5

终端测度

终端测度(terminal measure)是 T-远期测度的一个特例,在给定一组期限结构 0 ≤ T0 < T1 < … < TN 中,我们在最终期限 TN 上采用 T-远期测度作为终端测度。

  • 该测度对应的等价物是零息债 P(t,TN)

  • 该测度用 QT­_N 来表示,期望符号用 ET_N 表示

 

对于到期日为 T 的金融产品,其中 T < TN,我们有以下公式。

期望里的 V(T)/P(t,TN) 可以理解成,把 T 点的收益 V(T) 投资到零息债 P(T,TN) 至 TN 点得到的总收益。这样把产品的现金流想象发生在 TN,从而和等价物 P(t,TN) 的到期日 TN 一致。

终端测度在马尔科夫模型(Markov Functional Model, MFM)中使用到。

2.6

混合测度

首先看一个很重要的推导,

在 T 点上观察在 [T, TN] 之间,V(T)/P(t,TN) 和 V(T)/(β(T)/β(TN)) 是等价的。

因此我们有

再回到 T-远期测度的等价物 - 零息债 P(t,T),它有个条件是 t ≤ T。当 t > T 时,零息债已到期,按理说这个等价物已不存在了。但如果我们把 P(T,T),即零息债在到期日上的收益 1 投资到银行存款上,这样在任何一个大于 T 的时点 t,该「产品」的价格为

让我们把这个人造产品用 ~P(t, T) 表示,其中 t 可以是任意值,我们有

显然 ~P(t, T) 可以当成等价物,对应的测度符号用 Q~T­ 表示,期望符号用 E~T­ 表示,


情况一:如果被估值的金融产品到期日为 T,t< T,那么

这就是普通 T-远期测度下的估值公式。


情况二:如果被估值的金融产品到期日为 TN,其中 TN > T 但 t < T,那么

这就是普通风险中性测度下的估值公式。

这种「一会儿是 A 测度一会儿是 B 测度」的测度称为混合测度(hybrid measure),具体到「一会儿是 T-远期测度一会儿是风险中性测度」的测度称为延伸版 T-远期测度(extended T-forward measure)。

延伸版 T-远期测度在最近 Lyashenko A. 和 Mercurio F. 的Looking Forward to Backward-Looking Rates 中大放异彩。仅仅就把 P(t, T) 里面 t ≤ T 条件放宽,定义出当 t > T 时的 P(t, T) = β(t)/β(T),用这样延伸的 P(t, T) 当等价物,就可以把原来 LIBOR Market Model (LMM) 延伸到 Forward Market Model (FMM)。

FMM 整个框架价值极高,它即可以处理前瞻型(forward-looking)利率比如 LIBOR,又可以处理后顾型(backward-looking)利率比如带期限的 SOFR,真是「一统江湖」的利率模型大杀器。更妙的是,实现 FMM 只需在 LMM 基础做少量变动,没有增加过多的人力资源。在 2021 年底 LIBOR 终止之后,FMM 为「和 SOFR 挂钩」的期权提供了一套严谨而又完整的方法论。

2.7

股票测度

拿标的为股票的欧式看期权举例,在 T 点时的支付函数为

其中 S(T) 是 T 点股票的即期价格,K 是行权价格。

在定价股票期权时,比起股票价格,利率对期权价格的影响要小得多,因此把利率当成确定变量甚至常数。在风险中性测度下的估值公式为

第二项计算起来非常简单,计算一个简单的 S(T) 大于 K 的概率,但是第一项有些复杂,里面 S(T) 出现了两次。

先做点基本工作,在Q 测度下 S(t) 的 SDE 和它的解 S(T) 为

那么第二项为

第一项直接算有些困难,但如果转换测度呢?用股票基金 S(t)·eqt 做等价物如何?测度用 QS 表示,期望符号用 ES 表示,现在来推导第一项

这化简得和第二项基本一样了嘛,只不过一个在 Q 测度下,一个在 QS 测度下,计算 S(T) 大于 K 的概率。那么 S(t) 的 SDE 在 Q 测度和 QS 测度下一样吗?不一样的话怎么做转化?

这个就是下节的内容 – 吉尔萨诺夫定理(Girsanov’s Theorem)。利用该定理证明出转换测度就是转换漂移项。只要掌握了这个技术,你终将变成推导帝!

Stay Tuned!

这篇关于测度转换 (上) – 等价物转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/341105

相关文章

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

Java将时间戳转换为Date对象的方法小结

《Java将时间戳转换为Date对象的方法小结》在Java编程中,处理日期和时间是一个常见需求,特别是在处理网络通信或者数据库操作时,本文主要为大家整理了Java中将时间戳转换为Date对象的方法... 目录1. 理解时间戳2. Date 类的构造函数3. 转换示例4. 处理可能的异常5. 考虑时区问题6.

基于C#实现将图片转换为PDF文档

《基于C#实现将图片转换为PDF文档》将图片(JPG、PNG)转换为PDF文件可以帮助我们更好地保存和分享图片,所以本文将介绍如何使用C#将JPG/PNG图片转换为PDF文档,需要的可以参考下... 目录介绍C# 将单张图片转换为PDF文档C# 将多张图片转换到一个PDF文档介绍将图片(JPG、PNG)转

PDF 软件如何帮助您编辑、转换和保护文件。

如何找到最好的 PDF 编辑器。 无论您是在为您的企业寻找更高效的 PDF 解决方案,还是尝试组织和编辑主文档,PDF 编辑器都可以在一个地方提供您需要的所有工具。市面上有很多 PDF 编辑器 — 在决定哪个最适合您时,请考虑这些因素。 1. 确定您的 PDF 文档软件需求。 不同的 PDF 文档软件程序可以具有不同的功能,因此在决定哪个是最适合您的 PDF 软件之前,请花点时间评估您的

C# double[] 和Matlab数组MWArray[]转换

C# double[] 转换成MWArray[], 直接赋值就行             MWNumericArray[] ma = new MWNumericArray[4];             double[] dT = new double[] { 0 };             double[] dT1 = new double[] { 0,2 };

数据流与Bitmap之间相互转换

把获得的数据流转换成一副图片(Bitmap) 其原理就是把获得倒的数据流序列化到内存中,然后经过加工,在把数据从内存中反序列化出来就行了。 难点就是在如何实现加工。因为Bitmap有一个专有的格式,我们常称这个格式为数据头。加工的过程就是要把这个数据头与我们之前获得的数据流合并起来。(也就是要把这个头加入到我们之前获得的数据流的前面)      那么这个头是

高斯平面直角坐标讲解,以及地理坐标转换高斯平面直角坐标

高斯平面直角坐标系(Gauss-Krüger 坐标系)是基于 高斯-克吕格投影 的一种常见的平面坐标系统,主要用于地理信息系统 (GIS)、测绘和工程等领域。该坐标系将地球表面的经纬度(地理坐标)通过一种投影方式转换为平面直角坐标,以便在二维平面中进行距离、面积和角度的计算。 一 投影原理 高斯平面直角坐标系使用的是 高斯-克吕格投影(Gauss-Krüger Projection),这是 横

VC环境下整型转换为字符串型(2)

在串口下位机的发送中,可能会用到需要发送数字,显示为字符串型的 和上一篇文字《串口中字符串转换为整型》一正一反,知识点学习会了: #include<iostream.h> #include <stdio.h> #include <string.h>   void inttostr(int m,unsigned char * str) { int length=0;   int tmp,te