scanpy赋值问题

2023-11-03 01:20
文章标签 问题 赋值 scanpy

本文主要是介绍scanpy赋值问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天发现一个很奇怪的bug


import numpy as np
import pandas as pd
import anndata as ad
from scipy.sparse import csr_matrix
print(ad.__version__)counts = csr_matrix(np.random.poisson(1, size=(100, 2000)), dtype=np.float32)
adata1 = ad.AnnData(counts)
print(adata1)def f(adata):adata = adata[:,0:1] # print(adata.shape)f(adata1)
print(adata1.shape)

结果如下
在这里插入图片描述
可以看到在函数中,这个adata的结果是变化了,但是并没有改变外部adata的值


import numpy as np
import pandas as pd
import anndata as ad
from scipy.sparse import csr_matrix
print(ad.__version__)counts = csr_matrix(np.random.poisson(1, size=(100, 2000)), dtype=np.float32)
adata1 = ad.AnnData(counts)
print(adata1.X[0:2,0:10])def f(adata):adata = adata[:,0:1] # print(adata.shape)f(adata1)
print(adata1.shape)
print(adata1.X[0:2,0:10])

在这里插入图片描述

但是如果一开始我不在函数中操作,而是主程序中,这个结果


import numpy as np
import pandas as pd
import anndata as ad
from scipy.sparse import csr_matrix
print(ad.__version__)counts = csr_matrix(np.random.poisson(1, size=(100, 2000)), dtype=np.float32)
adata1 = ad.AnnData(counts)
print(adata1.X.shape)adata1 = adata1[:,0:1]
print(adata1.shape)

结果如下
在这里插入图片描述
这个现象只能解释为adata= adata1[:,0:1]是一个复制的行为,只不过同名了,所以adata的饮用变了,如果

adata2 = adata1[:,0:1],

可以想象,这个结果不会对adata1结果有影响

这仅仅是一个简简单单的例子,下面有一个更奇怪的测试

import scanpy as sc adata= sc.read("/Users/yxk/Desktop/test_dataset/pbmc/pbmc.h5ad")
adata.obs["BATCH"] = adata.obs["batch"].copy()
adata.obs["label"]=adata.obs["celltype"].astype("category").cat.codes 
n_classes= len(adata.obs["label"].value_counts())
print(adata)adata1= adata[adata.obs["batch"]=="pbmc_3p"].copy()
adata2= adata[adata.obs["batch"]=="pbmc_5p"].copy()
#print(adata1.X)
#print(adata2.X)## 如果用这种方式,我的结果是这样的
def preprocessNew(adata_A_input, ):'''Performing preprocess for a pair of datasets.To integrate multiple datasets, use function preprocess_multiple_anndata in utils.py'''adata_A = adata_A_inputprint("Finding highly variable genes...")#sc.pp.highly_variable_genes(adata_A, flavor='seurat_v3', n_top_genes=2000)#hvg_A = adata_A.var[adata_A.var.highly_variable == True].sort_values(by="highly_variable_rank").indexprint("Normalizing and scaling...")sc.pp.normalize_total(adata_A, target_sum=1e4)sc.pp.log1p(adata_A)sc.pp.highly_variable_genes(adata_A,n_top_genes=2000)hvg_A = list(adata1.var_names[adata1.var.highly_variable])adata_A = adata_A[:, hvg_A]sc.pp.scale(adata_A, max_value=10)print(adata_A.X[0:1,0:100])print(adata_A.X.shape)# 为啥这些结果是这样的preprocessNew(adata1)
print(adata1.X.shape)

在这里插入图片描述可以看到adata的结果是没有改变的,还是33694维,但是我在函数中,明明是选择了高变基因的

但是如果采用下面的代码

import scanpy as sc adata= sc.read("/Users/yxk/Desktop/test_dataset/pbmc/pbmc.h5ad")
adata.obs["BATCH"] = adata.obs["batch"].copy()
adata.obs["label"]=adata.obs["celltype"].astype("category").cat.codes 
n_classes= len(adata.obs["label"].value_counts())
print(adata)adata1= adata[adata.obs["batch"]=="pbmc_3p"].copy()
adata2= adata[adata.obs["batch"]=="pbmc_5p"].copy()
#print(adata1.X)
#print(adata2.X)def preprocessNew(adata_A_input, ):'''Performing preprocess for a pair of datasets.To integrate multiple datasets, use function preprocess_multiple_anndata in utils.py'''adata_A = adata_A_inputprint("Finding highly variable genes...")#sc.pp.highly_variable_genes(adata_A, flavor='seurat_v3', n_top_genes=2000)#hvg_A = adata_A.var[adata_A.var.highly_variable == True].sort_values(by="highly_variable_rank").indexprint("Normalizing and scaling...")sc.pp.normalize_total(adata_A, target_sum=1e4)sc.pp.log1p(adata_A)sc.pp.highly_variable_genes(adata_A,n_top_genes=2000,subset=True)#adata_A = adata_A[:, hvg_A]sc.pp.scale(adata_A, max_value=10)print(adata_A.X[0:1,0:100])
preprocessNew(adata1)
print(adata1.X.shape)
print(adata1.X[0:1,0:100])
## 但是线则这个问题为啥不是

结果如下
在这里插入图片描述
这里可以看到,我最终的adata1的维度是改变了,这里需要注意

这里使用
sc.pp.highly_variable_genes(adata1,n_top_genes=2000,subset=True),就是对adata的引用改动了,最终导致最开始的atata出现了变化,反正最好还是用scanpy的内置函数了,一旦在函数里赋值就要注意局部对象的问题

import scanpy as sc adata= sc.read("/Users/yxk/Desktop/test_dataset/pbmc/pbmc.h5ad")
adata.obs["BATCH"] = adata.obs["batch"].copy()
adata.obs["label"]=adata.obs["celltype"].astype("category").cat.codes 
n_classes= len(adata.obs["label"].value_counts())
print(adata)
adata1= adata[adata.obs["batch"]=="pbmc_3p"].copy()
#adata2= adata[adata.obs["batch"]=="pbmc_5p"].copy()
#print(adata1.X)
#print(adata2.X)
print("Normalizing and scaling...")
sc.pp.normalize_total(adata1, target_sum=1e4)
sc.pp.log1p(adata1)
sc.pp.highly_variable_genes(adata1,n_top_genes=2000,subset=True)
sc.pp.scale(adata1, max_value=10)
print(adata1.X[0:1,0:100])
print(adata1.X.shape)
print(adata1.X[0:1,0:100])
## 但是线则这个问题为啥不是

如果采用了preprocessNew的函数,那么本质上只对adata做了如下变化

import scanpy as sc adata= sc.read("/Users/yxk/Desktop/test_dataset/pbmc/pbmc.h5ad")
adata.obs["BATCH"] = adata.obs["batch"].copy()
adata.obs["label"]=adata.obs["celltype"].astype("category").cat.codes 
n_classes= len(adata.obs["label"].value_counts())
print(adata)adata1= adata[adata.obs["batch"]=="pbmc_3p"].copy()
#adata2= adata[adata.obs["batch"]=="pbmc_5p"].copy()
#print(adata1.X)
#print(adata2.X)## 如果用这种方式,我的结果是这样的
def preprocessNew(adata_A_input, ):'''Performing preprocess for a pair of datasets.To integrate multiple datasets, use function preprocess_multiple_anndata in utils.py'''adata_A = adata_A_inputprint("Finding highly variable genes...")#sc.pp.highly_variable_genes(adata_A, flavor='seurat_v3', n_top_genes=2000)#hvg_A = adata_A.var[adata_A.var.highly_variable == True].sort_values(by="highly_variable_rank").indexprint("Normalizing and scaling...")sc.pp.normalize_total(adata_A, target_sum=1e4)sc.pp.log1p(adata_A)sc.pp.highly_variable_genes(adata_A,n_top_genes=2000)hvg_A = list(adata1.var_names[adata1.var.highly_variable])adata_A = adata_A[:, hvg_A]sc.pp.scale(adata_A, max_value=10)print(adata_A.X[0:1,0:100])print(adata_A.X.shape)# 为啥这些结果是这样的preprocessNew(adata1)
print(adata1.X.shape)
print(adata1.X[0:1,0:100])

结果如下
在这里插入图片描述reproduce result

import scanpy as sc adata= sc.read("/Users/yxk/Desktop/test_dataset/pbmc/pbmc.h5ad")
adata.obs["BATCH"] = adata.obs["batch"].copy()
adata.obs["label"]=adata.obs["celltype"].astype("category").cat.codes 
n_classes= len(adata.obs["label"].value_counts())
print(adata)adata2= adata[adata.obs["batch"]=="pbmc_3p"].copy()#print(adata1.X)
#print(adata2.X)## 如果用这种方式,我的结果是这样的print("Normalizing and scaling...")
sc.pp.normalize_total(adata2, target_sum=1e4)
sc.pp.log1p(adata2) # 真正对adata1只有这么多的操作# 为啥这些结果是这样的
print(adata2.X.shape)
print(adata2.X[0:1,0:100])

在这里插入图片描述

from sklearn.metrics import mean_squared_error
mean_squared_error(adata1.X.toarray(),adata2.X.toarray())

结果如下
在这里插入图片描述

这篇关于scanpy赋值问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/334586

相关文章

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给