小白爬虫学习之电影票房排名

2023-11-02 20:50

本文主要是介绍小白爬虫学习之电影票房排名,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学习目标:

使用正则表达式、requests等知识爬虫某网站的电影票房榜单,并用pandas、matplotlib进行绘图


1. 首先导入使用的库

import requests
import csv
import pandas as pd
import matplotlib.pyplot as plt
import warnings

2. 解决符号问题

因为在爬虫的过程中,会遇到中文或特殊符号无法显示的情况,使用rcParams

warnings.filterwarnings('ignore')
plt.rcParams['font.sans-serif'] = ['SimHei']  # 解决中文显示
plt.rcParams['axes.unicode_minus'] = False  # 解决符号无法显示

 3. 爬虫准备

将爬取的数据存入到cvs中,并设置cvs表格的标题

def main():headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36', }data = {'r': '0.9936776079863086','top': '50','type': '0',}resp = requests.post('https://ys.endata.cn/enlib-api/api/home/getrank_mainland.do', headers=headers, data=data)data_list = resp.json()['data']['table0']for item in data_list:rank = item['Irank']  # 排名MovieName = item['MovieName']  # 电影名称ReleaseTime = item['ReleaseTime']  # 上映时间TotalPrice = item['BoxOffice']  # 总票房(万)AvgPrice = item['AvgBoxOffice']  # 平均票价AvgAudienceCount = item['AvgAudienceCount']  # 平均场次# 写入csv文件csvwriter.writerow((rank, MovieName, ReleaseTime, TotalPrice, AvgPrice, AvgAudienceCount))print(rank, MovieName, ReleaseTime, TotalPrice, AvgPrice, AvgAudienceCount)

4. 进行爬虫

 # 读取数据data = pd.read_csv('07.csv')# 从上映时间中提取出年份data['年份'] = data['上映时间'].apply(lambda x: x.split('-')[0])# 各年度上榜电影总票房占比df1 = data.groupby('年份')['总票房(万)'].sum()plt.figure(figsize=(6, 6))plt.pie(df1, labels=df1.index.to_list(), autopct='%1.2f%%')plt.title('各年度上榜电影总票房占比')plt.show()# 各个年份总票房趋势df1 = data.groupby('年份')['总票房(万)'].sum()plt.figure(figsize=(6, 6))plt.plot(df1.index.to_list(), df1.values.tolist())plt.title('各年度上榜电影总票房趋势')plt.show()# 平均票价最贵的前十名电影print(data.sort_values(by='平均票价', ascending=False)[['年份', '电影名称', '平均票价']].head(10))# 平均场次最高的前十名电影print(data.sort_values(by='平均场次', ascending=False)[['年份', '电影名称', '平均场次']].head(10))

5. 运行结果

cvs中的文件内容

 总票房占比

 折线图

 6. 完整代码

import requests
import csv
import pandas as pd
import matplotlib.pyplot as plt
import warningswarnings.filterwarnings('ignore')
plt.rcParams['font.sans-serif'] = ['SimHei']  # 解决中文显示
plt.rcParams['axes.unicode_minus'] = False  # 解决符号无法显示def main():headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36', }data = {'r': '0.9936776079863086','top': '50','type': '0',}resp = requests.post('https://ys.endata.cn/enlib-api/api/home/getrank_mainland.do', headers=headers, data=data)data_list = resp.json()['data']['table0']for item in data_list:rank = item['Irank']  # 排名MovieName = item['MovieName']  # 电影名称ReleaseTime = item['ReleaseTime']  # 上映时间TotalPrice = item['BoxOffice']  # 总票房(万)AvgPrice = item['AvgBoxOffice']  # 平均票价AvgAudienceCount = item['AvgAudienceCount']  # 平均场次# 写入csv文件csvwriter.writerow((rank, MovieName, ReleaseTime, TotalPrice, AvgPrice, AvgAudienceCount))print(rank, MovieName, ReleaseTime, TotalPrice, AvgPrice, AvgAudienceCount)def data_analyze():# 读取数据data = pd.read_csv('07.csv')# 从上映时间中提取出年份data['年份'] = data['上映时间'].apply(lambda x: x.split('-')[0])# 各年度上榜电影总票房占比df1 = data.groupby('年份')['总票房(万)'].sum()plt.figure(figsize=(6, 6))plt.pie(df1, labels=df1.index.to_list(), autopct='%1.2f%%')plt.title('各年度上榜电影总票房占比')plt.show()# 各个年份总票房趋势df1 = data.groupby('年份')['总票房(万)'].sum()plt.figure(figsize=(6, 6))plt.plot(df1.index.to_list(), df1.values.tolist())plt.title('各年度上榜电影总票房趋势')plt.show()# 平均票价最贵的前十名电影print(data.sort_values(by='平均票价', ascending=False)[['年份', '电影名称', '平均票价']].head(10))# 平均场次最高的前十名电影print(data.sort_values(by='平均场次', ascending=False)[['年份', '电影名称', '平均场次']].head(10))if __name__ == '__main__':# 创建保存数据的csv文件with open('07.csv', 'w', encoding='utf-8', newline='') as f:csvwriter = csv.writer(f)# 添加文件表头csvwriter.writerow(('排名', '电影名称', '上映时间', '总票房(万)', '平均票价', '平均场次'))main()# 数据分析data_analyze()

7. 本次学习总结

在本次的学习中,使用了requests进行网络爬虫,并使用画图工具绘制了饼状图和折线图,对之前学过的知识也有了进一步的巩固。

这篇关于小白爬虫学习之电影票房排名的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/333239

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

hdu 2093 考试排名(sscanf)

模拟题。 直接从教程里拉解析。 因为表格里的数据格式不统一。有时候有"()",有时候又没有。而它也不会给我们提示。 这种情况下,就只能它它们统一看作字符串来处理了。现在就请出我们的主角sscanf()! sscanf 语法: #include int sscanf( const char *buffer, const char *format, ... ); 函数sscanf()和

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个