Redis深度历险-Redis字典源码内部结构

2023-11-02 19:59

本文主要是介绍Redis深度历险-Redis字典源码内部结构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文大部分内容引自《Redis深度历险:核心原理和应用实践》,感谢作者!!!

Redis字典的用途

Redis中 hash结构的数据会使用到字典,整个Redis数据库中所有的key和value也组成了一个全局字典,带过期时间的key集合也是一个字典。zset集合中存储value和score值的映射关系也是通过dict结构实现的

struct RedisDb {dict* dict; // all keys key=>valuedict* expires; // all expired keys key=>long(timestamp)...
}struct zset {dict *dict; //all values  value => scorezskiplist *zsl;
}

dict内部结构

dict内部有两个hashtable,通常情况下只有一个hashtable是有值的;在dict扩容或者缩容时需要分配新的hashtable,然后进行渐进式rehash,两个hashtable种存储的分别是新值和旧值;在rehash完成之后,旧的hashtable被删除,新的hashtable会取代旧的hashtable

struct dict {dictType *type;    //类型特定函数void *privdata;    //私有数据dictht ht[2];    //2个哈希表,哈希表负载过高进行rehash的时候才会用到第2个哈希表int rehashidx;    //rehash目前进度,当哈希表进行rehash的时候用到,其他情况下为-1
}
struct dictEntry {void *key;union {void *val;uint64_t u64;    //uint64_t整数int64_t s64;    //int64_t整数}v;struct dictEntry *next;    //指向下个哈希表节点
}
struct dictht {dictEntry **table;    //哈希表数组unsigned long size;    //哈希表大小,即哈希表数组大小unsigned long sizemask; //哈希表大小掩码,总是等于size-1,主要用于计算索引unsigned long used;    //已使用节点数,即已使用键值对数
}

Redis中的hashtable结构和Java的HashMap几乎是一样的,都是通过分桶的方式解决hash冲突。第一维是数组,第二维是链表;数组中存储的是链表的第一个元素的指针

渐进式rehash

大字典扩容是比较耗时的,需要重新申请新的数组,然后将旧字典所有链表中的元素重新挂接到新的数组下面,这是一个O(n)级别的操作,作为单线程的Redis无法接受这样的阻塞;Redis采用渐进式rehash

dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing)
{long index;dictEntry *entry;dictht *ht;// 这里进行小步搬迁if (dictIsRehashing(d)) {_dictRehashStep(d);}/* Get the index of the new element, or -1 if* the element already exists.*/if ((index = _dictKeyIndex(d, key, dictHashKey(d,key), existing)) == -1) {return NULL;}/* Allocate the memory and store the new entry.* Insert the element in top, with the assumption that in a database* system it is more likely that recently added entries are accessed* more frequently.*///如果字典处于搬迁过程中,要将新的元素挂接到新的数组下面ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];entry = zmalloc(sizeof(*entry));entry->next = ht->table[index];ht->table[index] = entry;ht->used++;/* Set the hash entry fields.*/dictSetKey(d, entry, key);return entry;
}

在客户端对dict进行(hset/hdel等指令时)会触发rehash,除了指令触发rehash,Redis还会在定时任务中对字典进行主动搬迁

// 服务器定时任务
void databaseCron() {
...if (server.activerehashing) {for (j = 0; j < dbs_per_call; j++) {int work_done = incrementallyRehash(rehash_db);if (work_done) {/* If the function did some work, stop here, we'll do* more at the next cron loop.*/break;} else {/* If this db didn't need rehash, we'll try the next one.*/rehash_db++;rehash_db %= server.dbnum;}}}
}

dict查找过程

插入和删除元素都依赖于查找,hashtable的元素是存储在链表中的,所以得先计算出key对应的数组下标;hash_func会将keyhash得出一个整数,不同的key会被映射成分布比较均匀散乱的整数。只有hash均匀之后整个hashtable才是平衡的,二维链表的长度就不会差距很远,查找算法的性能也会比较稳定

func get(key) {let index = hash_func(key) % size;let entry = table[index];while(entry != NULL) {if entry.key == target {return entry.value;}entry = entry.next;}
}

hash函数

Redis字典默认的hash函数是siphash,siphash算法即使在输入key很小的情况下,也可以产生随机性特别好的输出,而且它的性能也非常突出。对于Redis这样的单线程来说,字典数据结构如此普遍,字典操作也会非常频繁,hash函数自然也是越快越好

hash攻击

如果 hash 函数存在偏向性,黑客就可能利用这种偏向性对服务器进行攻击。存在偏向性的 hash 函数在特定模式下的输入会导致 hash 第二维链表长度极为不均匀,甚至所有的元素都集中到个别链表中,直接导致查找效率急剧下降,从O(1)退化到O(n)。有限的服务器计算能力将会被 hashtable 的查找效率彻底拖垮。这就是所谓 hash 攻击。

扩容条件

/* Expand the hash table if needed */
static int _dictExpandIfNeeded(dict *d) {/* Incremental rehashing already in progress. Return. */if (dictIsRehashing(d)) {return DICT_OK;}/* If the hash table is empty expand it to the initial size. */if (d->ht[0].size == 0) {return dictExpand(d, DICT_HT_INITIAL_SIZE);}/* If we reached the 1:1 ratio, and we are allowed to resize the hash* table (global setting) or we should avoid it but the ratio between* elements/buckets is over the "safe" threshold, we resize doubling* the number of buckets. */if (d->ht[0].used >= d->ht[0].size &&(dict_can_resize || d->ht[0].used/d->ht[0].size > dict_force_resize_ratio)) {return dictExpand(d, d->ht[0].used*2);}return DICT_OK;
}

正常情况下,当hash表中元素的个数等于一维数组的长度时会开始扩容,扩容的新数组大小是原数组的2倍;若Redis正在做bgsave,为了减少内存页的过多分离(Copy On Write),Redis尽量不去扩容(dict_can_resize);如果hash表已经非常满了,元素个数已经达到了一维数组长度的5倍(dict_force_resize_ratio),说明hash表已经过于拥挤了,这个时候就会强制扩容

缩容条件

int htNeedsResize(dict *dict) {long long size, used;size = dictSlots(dict);used = dictSize(dict);return (size > DICT_HT_INITIAL_SIZE && (used*100/size < HASHTABLE_MIN_FILL));
}

当hash表因为元素的逐渐删减变得越来越稀疏时,Redis会对hash表进行缩容来减少hash表的一维数组空间占用;缩容的条件是元素个数低于数组长度的10%,缩绒不会考虑Redis是否正在做bgsave

set的结构

Redis中的set底层结构也是字典,只不过所有的value都是NULL,其它特性和字典一模一样

为什么缩容不用考虑bgsave

扩容时考虑bgsave是因为,扩容需要申请额外的很多内存,且会重新链接链表(如果会冲突的话), 这样会造成很多内存碎片,也会占用更多的内存,造成系统的压力;而缩容过程中,由于申请的内存比较小,同时会释放掉一些已经使用的内存,不会增大系统的压力,因此不用考虑是否在进行bgsave操作

这篇关于Redis深度历险-Redis字典源码内部结构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/332957

相关文章

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

Redis存储的列表分页和检索的实现方法

《Redis存储的列表分页和检索的实现方法》在Redis中,列表(List)是一种有序的数据结构,通常用于存储一系列元素,由于列表是有序的,可以通过索引来访问元素,因此可以很方便地实现分页和检索功能,... 目录一、Redis 列表的基本操作二、分页实现三、检索实现3.1 方法 1:客户端过滤3.2 方法

Python中操作Redis的常用方法小结

《Python中操作Redis的常用方法小结》这篇文章主要为大家详细介绍了Python中操作Redis的常用方法,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解一下... 目录安装Redis开启、关闭Redisredis数据结构redis-cli操作安装redis-py数据库连接和释放增

redis防止短信恶意调用的实现

《redis防止短信恶意调用的实现》本文主要介绍了在场景登录或注册接口中使用短信验证码时遇到的恶意调用问题,并通过使用Redis分布式锁来解决,具有一定的参考价值,感兴趣的可以了解一下... 目录1.场景2.排查3.解决方案3.1 Redis锁实现3.2 方法调用1.场景登录或注册接口中,使用短信验证码场

Redis 多规则限流和防重复提交方案实现小结

《Redis多规则限流和防重复提交方案实现小结》本文主要介绍了Redis多规则限流和防重复提交方案实现小结,包括使用String结构和Zset结构来记录用户IP的访问次数,具有一定的参考价值,感兴趣... 目录一:使用 String 结构记录固定时间段内某用户 IP 访问某接口的次数二:使用 Zset 进行

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每