49个学习资源!Python初级到高级,轻轻松松

2023-11-02 19:10

本文主要是介绍49个学习资源!Python初级到高级,轻轻松松,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文为不同阶段的 Python 学习者从不同角度量身定制了 49 个学习资源。

01 初学者

1. Welcome to Python.org
  • https://www.python.org/
  • 官方Python站点提供了一个开始使用Python生态系统和学习Python的好方法,包括官方文档。
2. Learning Python The Hard Way
  • https://learnpythonthehardway…
  • 一本在线书籍,有付费版与免费版的
3. Basic Data Types in Python – Real Python
  • https://realpython.com/python…
  • 介绍了Python 中的基本数据类型
4. How to Run Your Python Scripts – Real Python
  • https://realpython.com/run-py…
  • 教你如何运行Python脚本
5. Python Tutorial: Learn Python For Free | Codecademy
  • https://www.codecademy.com/le…
  • Codecademy提供免费的互动课程,帮助您练习Python的基础知识,同时为您提供即时,类似游戏的反馈。对于那些喜欢练习专业知识的人来说,学习Python的好方法。
6. Google’s Python Class | Python Education | Google Developers
  • https://developers.google.com…
  • 来自Google开发人员的官方Python开发类。本教程是交互式代码片段的混合,可以在您的结尾和上下文文本上复制和运行。这是一种从世界领先的技术公司之一学习Python的半互动方式。
7. Learn Python – Free Interactive Python Tutorial
  • https://www.learnpython.org/
  • 此交互式教程依赖于可以实现和实践的实时代码片段。使用此资源作为交互式学习的方式,并提供一些指导。
8. Jupyter Notebook: An Introduction – Real Python
  • https://realpython.com/jupyte…
  • 想要一种简单,直观的方式来访问和使用Python函数吗?Jupyter Notebook就是最好的选择。使用它比命令行和不同的拼凑在一起的脚本更容易。这是我自己使用的设置。本教程将帮助您开始学习Python的路径。
9. Python Tutorial – W3Schools
  • https://www.w3schools.com/pyt…
  • W3School使用与用于教授HTML和其他Python相同的格式。使用交互式和文本片段练习不同的基本功能。使用本教程可以获得语言的基础并学习Python。
10. Python | Kaggle
  • https://www.kaggle.com/learn/…
  • Kaggle是一个举办数据科学和机器学习竞赛的平台。竞争对手使用数据集并尽可能准确地创建预测模型。他们还提供交互式Python笔记本,帮助您学习Python的基础知识。
11. Learning Python: From Zero to Hero – freeCodeCamp.org
  • https://medium.freecodecamp.o…
  • 这篇基于文本的教程旨在总结Python中的所有基本数据和功能概念。通过关注Python的面向对象部分的对象和类部分,它深入研究了语言的多功能性。到最后,您应该在Python中有一个简洁的对象摘要以及不同的数据类型以及如何迭代或循环它们。
12. BeginnersGuide – Python Wiki
  • https://wiki.python.org/moin/…
  • 这个关于官方Python Wiki的简单教程充满了资源,甚至还包括一个针对非英语人士学习Python的中文翻译。
13. Python Tutorial – Tutorialspoint
  • https://www.tutorialspoint.co…
  • 以与W3Schools类似的方式设置,使用Tutorialspoint作为替代或某些功能和部分的复习。
14. Python (programming language) – Quora
  • https://www.quora.com/topic/P…
  • Quora社区中有许多学习Python的技术人员。本节专门介绍Python,包括运行分析和关于Python状态的紧迫问题及其在各种不同领域的实际应用,从数据可视化到Web开发。
15. Python – DEV Community – Dev.to
  • https://dev.to/t/python
  • Dev.to每天都有来自开发人员的用户提交的关于Python的文章和教程。使用这些视角来帮助您学习Python。
16. Python Weekly: A Free, Weekly Python E-mail Newsletter
  • https://www.pythonweekly.com/
  • 如果你是每周时事通讯的粉丝,那么你将会对Python Weekly感到满意,它总结了最新的发展,新闻以及有关Python的有趣文章。
17. The Ultimate List of Python YouTube Channels – Real Python
  • https://realpython.com/python…
  • 对于那些喜欢通过视频学习的人来说,这个Youtube频道列表可以帮助您在首选媒体中学习。
18. The Hitchhiker’s Guide to Python
  • https://docs.python-guide.org/
  • 与上面列出的其他资源不同,Hitchhiker的指南更加自以为是,并着眼于找到使用Python设置的最佳方法。使用它作为参考,并确保您最佳地设置为使用和学习Python。
19. Python: Online Courses from Harvard, MIT, Microsoft | edX
  • https://www.edx.org/learn/python
  • edX使用企业和学术合作伙伴来策划有关Python的内容。内容通常是免费的,但您必须支付经过验证的证书,证明您已通过课程。
20. Python Courses | Coursera
  • https://www.coursera.org/cour…
  • Coursera选择的Python课程可以帮助您访问大学和企业提供者的证书和课程。如果您觉得需要某种程度的认证,类似于edX,Coursera提供了一定程度的管理和认证,可以满足这些需求。

对于初学者想更轻松的学好Python开发,爬虫技术,Python数据分析,人工智能等技术,这里也给大家准备了一套系统教学资源,加Python技术学习教程qq裙:855408893,免费领取。学习过程中有疑问,群里有专业的老司机免费答疑解惑!点击加入我们的 python学习圈

02 进阶者

21. Getting started with Django | Django
  • https://www.djangoproject.com…
  • 官方的Django框架介绍将帮助您进行设置,以便您可以使用Python进行Web开发。
22. LEARNING PATH: Django: Modern Web Development with Django
  • https://www.oreilly.com/learn…
  • 来自O’Reilly的这个资源有助于为Python学习Django和Web开发技能提供更多策划。
23. A pandas cookbook – Julia Evans
  • https://jvns.ca/blog/2013/12/…
  • Pandas Cookbook可用于清理和处理数据。使用它使我能够将数据清理到我需要的级别,以便进行机器学习等等。
  • 它使用一个示例,展示如何过滤,分组数据并在其上执行功能 - 然后根据需要可视化数据。Pandas库是经过量身定制的,允许您有效地清理数据,并且可以对其进行转换并从聚合级别基础上查看趋势(使用方便的单行函数,如head()或describe)。
24. Newest ‘python’ Questions – Stack Overflow
  • https://stackoverflow.com/que…
  • Stack Overflow社区充满了迫切的问题和切实的解决方案。使用它作为Python的实现资源和学习Python的途径。
25. Python – Reddit
  • https://www.reddit.com/r/Python/
  • Python subreddit在Python中提供了大量不同的新闻文章和教程。
26. Data Science – Reddit
  • https://www.reddit.com/r/data…
  • Data Science subreddit提供了大量有关如何使用Python处理大型数据集并以有趣的方式处理它的资源。
27. Data science sexiness: Your guide to Python and R
  • https://thenextweb.com/dd/201…
  • 我为The Next Web编写了本指南,以便区分Python和R以及它们在数据科学生态系统中的用法。从那以后,Python不断推进并开始使用许多曾经构成R在数据分析,可视化和探索方面的核心基础的库,同时也欢迎在驱动世界的基础机器学习库中。尽管如此,它仍然是一个有用的比较点和Python的资源列表。
28. Data Science Tutorial: Introduction to Using APIs in Python – Dataquest
  • https://www.dataquest.io/blog…
  • 在处理数据时,一项基本技能是访问Twitter,Reddit和Facebook使用的API服务,以暴露他们持有的某些数据量。本教程将帮助您了解Reddit API的示例,并帮助您了解在查询API时将获得的不同代码响应。
29. Introduction to Data Visualization in Python – Towards Data Science
  • https://towardsdatascience.co…
  • 完成数据处理后,您需要提供数据以获取洞察力并与他人分享。本数据可视化指南总结了Python中的数据可视化选项,包括Pandas,Seaborn和ggplot的Python实现。
30. Top Python Web Development Frameworks to Learn in 2019
  • https://hackernoon.com/top-py…
  • 如果你想在Django之外的一套选项用Python开发并学习Python用于web应用程序,那么这个编译就是最好的。Hacker Noon出版物通常也会在本文之外的Python上提供有用的资源。值得一试。

03 高级玩家

31. Beginner’s Guide to Machine Learning with Python
  • https://towardsdatascience.co…
  • 这个基于文本的教程有助于向人们介绍使用Python进行机器学习的基础知识。对于数据科学而言,带有相关文章的Medium插座是机器学习和数据科学资源的绝佳来源。
32. Free Machine Learning in Python Course – Springboard
  • https://www.springboard.com/r…
  • 这个来自Springboard的免费学习路径有助于策划您需要学习的内容并在Python中练习机器学习。
33. Machine Learning – Reddit
  • https://www.reddit.com/r/Mach…
  • 机器学习subreddit经常关注最新的论文和经验进展。还讨论了这些进步的Python实现。
34. Python – KDnuggets
  • https://www.kdnuggets.com/tag…
  • KDNuggets提供有关数据科学,数据分析和机器学习的高级内容。它的Python部分讨论了如何在Python中实现这些想法。
35. Learn Python – Beginner through Advanced Online Courses – Udemy
  • https://www.udemy.com/topic/p…
  • Udemy提供一系列Python课程,有许多高级选项可以教你Python的复杂性。这些课程往往比认证课程便宜,但你要仔细查看评论。

36. A Brief Introduction to PySpark – Towards Data Science
  • https://towardsdatascience.co…
  • 对PySpark的介绍将帮助您开始使用更高级的分布式文件系统,这些系统允许您处理和处理比单个系统和Pandas更大的数据集。
37. scikit-learn: machine learning in Python
  • https://scikit-learn.org/
  • 大多数数据科学家使用Python的默认方式是使用scikit-learn来尝试模型思想:对不同机器学习模型的简单优化实现。学习一些机器学习理论,然后使用scikit-learn框架实现和练习。
38. The Next Level of Data Visualization in Python – Towards Data Science
  • https://towardsdatascience.co…
  • 本教程将介绍更高级的数据可视化版本以及如何实现它们,允许您预览可以将数据从关联热图切片到散点图基础的不同高级方法。
39. Machine Learning with Python | Coursera
  • https://www.coursera.org/lear…
  • Coursera选择使用Python进行机器学习的课程非常有名。IBM提供的这一介绍有助于指导您完成机器学习概念的视频和解释。
40. Home – deeplearning.ai
  • https://www.deeplearning.ai/
  • Deeplearning.ai是Andrew Ng(人工智能领域著名的斯坦福大学教授和Coursera的创始人)试图为大众带来深刻的学习。我最终完成了所有课程:他们提供认证,并且是两种交互式笔记本的清新组合,您可以使用Andrew Ng自己的不同概念和视频。
41. fast.ai · Making neural nets uncool again
  • https://www.fast.ai/
  • 这个深度学习课程有助于打破机器学习的逐节方面。最重要的是,它是完全免费的。我经常使用fast.ai作为复习或深入学习我不太了解的深度学习理念。
42. Learn and use machine learning | TensorFlow Core | TensorFlow
  • https://www.tensorflow.org/tu…
  • 本教程可帮助您使用TensorFlow和Google云基础架构的高级Keras组件对一组时尚图像进行深度学习。这是学习和练习深度学习技巧的好方法。

04 练习使用Python的资源

[图片上传失败…(image-2cce09-1594457361798)]

43. Datasets | Kaggle
  • https://www.kaggle.com/datasets
  • Kaggle提供了各种数据集,其中包含用户示例和upvoting,以指导您访问最流行的数据集。使用示例和数据集创建自己的数据分析,可视化或机器学习模型。
44. Practice Python
  • https://www.practicepython.org/
  • 练习Python有一堆初级练习,可以帮助您轻松使用Python并练习它。在处理不同的项目和练习之前,请将此作为初始预热练习。
45. Python Exercises – W3Schools
  • https://www.w3schools.com/pyt…
  • W3Schools上的Python练习遵循他们教程中的部分,并允许您使用Python进行一些交互式练习(尽管练习在练习中非常简单)。
46. Solve Python | HackerRank
  • https://www.hackerrank.com/do…
  • HackerRank提供了一系列练习,要求您在没有任何上下文的情况下解决。这是在Python中单独练习不同功能和输出的最佳方式(尽管您仍然希望通过不同的项目来巩固您的Python技能。)当您完成更多挑战时,您将获得积分和徽章。这无疑会激励我学习更多知识。一个非常有用的沙箱,供您学习Python。
47. Project Euler: About
  • https://projecteuler.net/
  • 项目Euler提供了各种更加困难的编程挑战,旨在测试您是否可以使用Python解决数学问题。用它来练习你的数学推理和你的Pythonic能力。
48. Writing your first Django app, part 1 | Django documentation | Django
  • https://docs.djangoproject.co…
  • 本文档可帮助您使用第一个Django应用程序实现,允许您使用Python在Web上获取内容。一旦你开始使用它,你可以构建你想要的任何东西。
49. Top 100 Python Interview Questions & Answers For 2019 | Edureka
  • https://www.edureka.co/blog/i…
  • 如果您在面试中遇到Python技能问题,这个面试问题列表将有助于作为一个有用的提醒和复习,并且是您练习和巩固不同Python概念的好方法。

对于初学者想更轻松的学好Python开发,爬虫技术,Python数据分析,人工智能等技术,这里也给大家准备了一套系统教学资源,加Python技术学习教程qq裙:855408893,免费领取。学习过程中有疑问,群里有专业的老司机免费答疑解惑!点击加入我们的 python学习圈

这篇关于49个学习资源!Python初级到高级,轻轻松松的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/332680

相关文章

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1