4.1.5 Duration and Convexity

2023-11-02 08:20
文章标签 4.1 duration convexity

本文主要是介绍4.1.5 Duration and Convexity,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

5. Duration and Convexity

5.1 Duration

Duration is the sensitivity of bond’s full price to changes in the bond’s YTM or in benchmark interest rates.

  • Longer time-to-maturity usually leads to higher duration.
  • Higher coupon rate leads to lower duration.
  • Higher yield-to-maturity leads to lower duration.
5.1.1 Yield Duration

Macaulay duration: the average time the bond holder has to wait before receiving the present value.

MacDur = ∑ t = 1 n t × P V C F t ∑ P V C F t \text{MacDur}=\frac{\sum^n_{t=1}t\times PVCF_t}{\sum PVCF_t} MacDur=PVCFtt=1nt×PVCFt

For a plain bond, the Macaulay duration is less than or equal to its maturity.

For a zero coupon bond, the Macaulay duration equals to its maturity.

Consider a two-year bond that provides annual coupons at the rate of 6 % 6\% 6%. The YTM of the bond is 5 % 5\% 5%.

N = 2 N=2 N=2, 1 / Y = 5 % 1/Y=5\% 1/Y=5%, P M T = 6 PMT=6 PMT=6, F V = 100 FV=100 FV=100 → P V = − 101.8594 \to PV=-101.8594 PV=101.8594

MacDur = 1 × 6 1 + 5 % 101.8594 + 2 × 106 ( 1 + 5 % ) 2 101.8594 = 1.9439 \text{MacDur} = 1\times \frac{\frac{6}{1+5\%}}{101.8594}+2\times \frac{\frac{106}{(1+5\%)^2}}{101.8594}=1.9439 MacDur=1×101.85941+5%6+2×101.8594(1+5%)2106=1.9439

Modified duration: provides a linear estimate of the percentage price change for a bond given a change in yield.

ModDur = − Δ P / P Δ y = MacDur 1 + y / m \text{ModDur}=-\frac{\Delta P/P}{\Delta y}=\frac{\text{MacDur}}{1+y/m} ModDur=ΔyΔP/P=1+y/mMacDur

Δ P ≈ − ModDur × Δ y × P \Delta P \approx -\text{ModDur}\times \Delta y\times P ΔPModDur×Δy×P

The Macaulay duration applies in the situation where y y y is measured with continuous compounding.

Δ P ≈ − MacDur × Δ y × P \Delta P \approx -\text{MacDur} \times \Delta y\times P ΔPMacDur×Δy×P

Dollar duration: a measure of the dollar change in a bond’s value to a change in the yield.

DollarDur(D) = − Δ P Δ y = ModDur × P \text{DollarDur(D)}=-\frac{\Delta P}{\Delta y}=\text{ModDur}\times P DollarDur(D)=ΔyΔP=ModDur×P

Δ P ≈ − DollarDur(D) × Δ y \Delta P\approx -\text{DollarDur(D)}\times \Delta y ΔPDollarDur(D)×Δy

DV01: describes the impact of a one-basis-point( 0.0001 0.0001 0.0001)change in interest rates on the value of a portfolio.
DV01 = − Δ P 10 , 000 × Δ y = DollarDur 10 , 000 = ModDur × P × 0.0001 \text{DV01}=-\frac{\Delta P}{10,000\times\Delta y}=\frac{\text{DollarDur}}{10,000}=\text{ModDur}\times P\times 0.0001 DV01=10,000×ΔyΔP=10,000DollarDur=ModDur×P×0.0001

5.1.2 Curve Duration

The One Factor Assumption: assumes that all interest rates move by the same amount, which means the shape of the term structure never changes(parallel shift).

Curve Duration: used for bonds with embedded option due to uncertain future cash flow.

Effective Duration: describes the percentage change in the price of a bond, due to a small change in all rates.

D E = − Δ P / P Δ r = P − Δ y − P + Δ y 2 P 0 Δ y D^E=-\frac{\Delta P /P}{\Delta r}=\frac{P_{-\Delta y}-P_{+\Delta y}}{2 P_0\Delta y} DE=ΔrΔP/P=2P0ΔyPΔyP+Δy

  • P 0 P_0 P0: initial observed bond price
  • Δ y \Delta y Δy: change in required yield

Consider a portfolio consists of a Treasury bond with a face value of USD 1 million paying a 10 % 10\% 10% per annum coupon semi-annually. The tenor of this bond is one year. Suppose that spot rates are as shown in the table below. Calculate the DV01 and effective duration, if spot rates move 5 5 5 bp.

Maturity(Years)Rate(%)+5bp Rate(%)-5bp Rate(%)
0.57.07.056.95
1.07.57.557.45

The value of the bond is:
50 , 000 1.035 + 1 , 050 , 000 1.037 5 2 = 1 , 023 , 777.32 \frac{50,000}{1.035}+\frac{1,050,000}{1.0375^2}=1,023,777.32 1.03550,000+1.037521,050,000=1,023,777.32

The rates increase by five basis points, the value of the bond:
50 , 000 1.03525 + 1 , 050 , 000 1.0377 5 2 = 1 , 023 , 295.72 \frac{50,000}{1.03525}+\frac{1,050,000}{1.03775^2}=1,023,295.72 1.0352550,000+1.0377521,050,000=1,023,295.72

D V 0 1 ′ = 1 , 023 , 777.32 − 1 , 023 , 295.72 5 = 96.32 DV01'=\frac{1,023,777.32-1,023,295.72}{5}=96.32 DV01=51,023,777.321,023,295.72=96.32

The rates decrease by five basis points, the value of the bond:
50 , 000 1.03475 + 1 , 050 , 000 1.0372 5 2 = 1 , 024 , 259.26 \frac{50,000}{1.03475}+\frac{1,050,000}{1.03725^2}=1,024,259.26 1.0347550,000+1.0372521,050,000=1,024,259.26

D V 0 1 ′ ′ = 1 , 024 , 259.26 − 1 , 023 , 777.32 5 = 96.39 DV01''=\frac{1,024,259.26-1,023,777.32}{5}=96.39 DV01′′=51,024,259.261,023,777.32=96.39

The two estimates of DV01 differ slightly because the bond’s price is not exactly a linear function of interest rates. We can get a good estimate of DV01 by averaging the two estimates:

D V 01 = ( 96.32 + 96.39 ) / 2 = 96.355 DV01=(96.32+96.39)/2=96.355 DV01=(96.32+96.39)/2=96.355

D E = P − Δ y − P + Δ y 2 P 0 Δ y = 1 , 024 , 259.26 − 1 , 023 , 295.72 2 × 1 , 023 , 777.32 × 0.05 % = 0.9412 D^E=\frac{P_{-\Delta y}-P_{+\Delta y}}{2 P_0\Delta y}=\frac{1,024,259.26-1,023,295.72}{2\times1,023,777.32\times0.05\%}=0.9412 DE=2P0ΔyPΔyP+Δy=2×1,023,777.32×0.05%1,024,259.261,023,295.72=0.9412

5.1.3 Limitations of Duration

Duration provides a good approximation of the effect of a small parallel shift in the interest rate term structure.

But these equations cannot be relied upon, if the change in the bond yield arises from a non-parallel shift in the interest rate term structure or the change is large.

5.2 Convexity

5.2.1 Convexity

Convexity(凸度) measures the non-linear relationship of bond prices to changes in interest rates and the curvature in the relationship between bond prices and bond yields that demonstrates how the duration of a bond changes as the interest rate changes.

The duration plus convexity approximation fits a quadratic function and captures some of the curvature, which provides a better approximation.

  • Duration overestimates(高估) the magnitude of price decreases
  • Duration underestimates(低估) the magnitude of price increases
    请添加图片描述
    MacConvexity = ∑ t = 1 n t 2 × P V C F t ∑ P V C F t \text{MacConvexity}=\frac{\sum^n_{t=1}t^2\times {PVCF}_t}{\sum {PVCF}_t} MacConvexity=PVCFtt=1nt2×PVCFt

Consider a bond that provides annual coupons at the rate of 6 % 6\% 6%. The maturity is 2 years. The YTM is 5 % 5\% 5%. Calculate the Macaulay convexity of it.

N = 1 N=1 N=1, 1 / Y = 5 1/Y=5 1/Y=5, P M T = 6 PMT=6 PMT=6, F V = 100 → P V = − 101.8594 FV=100 \to PV=-101.8594 FV=100PV=101.8594

MacCovexity = 1 2 × 6 ( 1 + 5 % ) 101.8594 + 2 2 × 106 ( 1 + 5 % ) 2 101.8594 = 3.8317 \text{MacCovexity}=1^2\times\frac{\frac{6}{(1+5\%)}}{101.8594}+2^2\times\frac{\frac{106}{(1+5\%)^2}}{101.8594}=3.8317 MacCovexity=12×101.8594(1+5%)6+22×101.8594(1+5%)2106=3.8317

Modified Convexity = MacConvexity ( 1 + y / m ) 2 \text{Modified\;Convexity}=\frac{\text{MacConvexity}}{(1+y/m)^2} ModifiedConvexity=(1+y/m)2MacConvexity

Consider a bond a bond’s Macaulay Convexity is 8.13904 8.13904 8.13904. If the bond is compounded semi-annually and YTM is 5.2455 % 5.2455\% 5.2455%, calculate the modified convexity of it.
Modified Convexity = 8.13904 ( 1 + 5.2455 % / 2 ) 2 = 7.7283 \text{Modified\;Convexity}=\frac{8.13904}{(1+5.2455\%/2)^2}=7.7283 ModifiedConvexity=(1+5.2455%/2)28.13904=7.7283

Effective convexity measures the sensitivity of the duration measure to changes in interest rates. The effective convexity( C E C^E CE) of a position worth P P P can be estimated as

C E = 1 P [ P + + P − − 2 P ( Δ y ) 2 ] C^E=\frac{1}{P}\left[\frac{P^++P^--2P}{(\Delta y)^2}\right] CE=P1[(Δy)2P++P2P]

5.2.2 Price Approximation

Duration provides a good approximation when there is small parallel shift in the interest rate term structure. However, it will provide a poor approximation if there’s non-parallel shift or the change is large.

The effect of parallel shifts of interest rate term structure can be more accurate by adding convexity analysis to the analysis of duration.

With continuous compounding

Δ P / P ≈ − MacDur ∗ Δ y + 1 2 ∗ MacConvexity ∗ ( Δ y ) 2 \Delta P/P\approx-\text{MacDur}*\Delta y+\frac{1}{2}*\text{MacConvexity}*(\Delta y)^2 ΔP/PMacDurΔy+21MacConvexity(Δy)2

Δ P ≈ − MacDur ∗ P ∗ Δ y + 1 2 ∗ MacConvexity ∗ P ∗ ( Δ y ) 2 \Delta P\approx-\text{MacDur}*P*\Delta y+\frac{1}{2}*\text{MacConvexity}*P*(\Delta y)^2 ΔPMacDurPΔy+21MacConvexityP(Δy)2

With discrete compounding frequencies
Δ P / P ≈ − ModDur ∗ Δ y + 1 2 ∗ ModConvexity ∗ ( Δ y ) 2 \Delta P/P \approx-\text{ModDur}*\Delta y+\frac{1}{2}*\text{ModConvexity}*(\Delta y)^2 ΔP/PModDurΔy+21ModConvexity(Δy)2

Δ P ≈ − ModDur ∗ P ∗ Δ y + 1 2 ∗ ModConvexity ∗ P ∗ ( Δ y ) 2 \Delta P\approx-\text{ModDur}*P*\Delta y+\frac{1}{2}*\text{ModConvexity}*P*(\Delta y)^2 ΔPModDurPΔy+21ModConvexityP(Δy)2

Suppose a bond with modified duration of 31.32 31.32 31.32 and modified convexity of 667 667 667, when its yield is expected to fall by 50 50 50 bps, what should be the expected percentage price change?

Δ P / P = − 31.32 ∗ ( − 0.0050 ) + 1 2 ∗ 667 ∗ ( − 0.0050 ) 2 = 16.49 % \Delta P /P=-31.32*(-0.0050)+\frac{1}{2}*667*(-0.0050)^2=16.49\% ΔP/P=31.32(0.0050)+21667(0.0050)2=16.49%

5.2.3 Negative Convexity

A callable bond gives the issuer the right to redeem all or part of the bond before the specified maturity date.

Most mortgage bonds are negatively convex, and callable bonds usually exhibit negative convexity at lower yield.

In a vanilla bond(without embedded options) we can typically use modified and effective interchangeably. When the bond contains embedded options, we prefer effective duration and effective convexity.

请添加图片描述

Putable bonds often have higher positive convexity, especially when interest rates are high.
请添加图片描述
The security with more convexity outperforms the less convex security in both bull (rising price) and bear(failing price) markets.

The bigger the volatility of the interest rate, the greater the gains from the positive convexity.

  • Long volatility of the interest rate → \to choosing a security with positive convexity
  • Short volatility of the interest rate → \to choosing a security with negative convexity
5.2.4 Portfolio Calculations

In regard to both modified(effective) duration and convexity, portfolio duration and convexity equal the weighted sum of individual, respectively, durations and convexities where each component’s weight is its value as a percentage of portfolio value.
D portfolio = ∑ i = 1 n w i × D i D_{\text{portfolio}}=\sum^n_{i=1}w_i\times D_i Dportfolio=i=1nwi×Di

C portfolio = ∑ i = 1 n w i × C i C_{\text{portfolio}}=\sum^n_{i=1}w_i\times C_i Cportfolio=i=1nwi×Ci

w i w_i wi: the bond’s market value to the whole portfolio value

DV01: The DV01 for a portfolio is simply the sum of the DV01s of the components of the portfolio.

5.2.5 Barbell vs. Bullet Portfolio

Barbell portfolio: securities in this portfolio concentrate in short and long maturities but less intermediate maturities.
请添加图片描述
Bullet portfolio: has more exposure at intermediate maturities.
请添加图片描述
For bonds with same duration, the one that has the greater dispersion of cash flows has the greater convexity.

A manager purchase $1 million Bond B. The coupon payments are semi-annual. Using A and C to construct a portfolio with the same cost and duration.

BondCoupon-SemiMaturityPriceYieldDurationConvexity
A2%595.38893%4.706025.16
B4%101004%8.175579
C6%30115.45435%14.9120331.73

{ V A + V C = 1 million V A × 4.7060 1 million + V C × 14.9120 1 million = 8.1755 → { V A = 0.66 million V C = 0.34 million \begin{cases} V_A+V_C=1\;\text{million}\\ \frac{V_A\times4.7060}{1\;\text{million}} +\frac{V_C\times 14.9120}{1\;\text{million}}=8.1755\end{cases}\to \begin{cases}V_A=0.66\; \text{million} \\ V_C=0.34\;\text{million}\end{cases} {VA+VC=1million1millionVA×4.7060+1millionVC×14.9120=8.1755{VA=0.66millionVC=0.34million

Convexity A + C = 0.66 × 25.16 + 0.34 × 331.73 = 129.39 \text{Convexity}_{A+C}=0.66\times25.16+0.34\times331.73=129.39 ConvexityA+C=0.66×25.16+0.34×331.73=129.39

Advantage for barbell portfolio:

  • These two strategies will have the same duration and different convexity.
  • The barbell strategies produces a better result when there is a parallel shift in the yield curve.

Disadvantage for barbell portfolio: The bullet investment would perform better than the barbell investment for many non-parallel shifts.

5.3 Hedging

5.3.1 Duration Hedging

To construct a portfolio that can hedge a small change in interest rates.

Δ \Delta Δ(Price change of underlying asset) + Δ \Delta Δ(Price change of hedging instrument) = 0

If DV01 \text{DV01} DV01 is expressed in terms of a fixed face amount, hedging a position of F A F_A FA face amount of security A required a position of F B F_B FB of security B where:

F B = F A × DV01 A DV01 B F_B=\frac{F_A\times \text{DV01}_A}{ \text{DV01}_B} FB=DV01BFA×DV01A

5.3.2 Duration and Convexity Hedging

We can make both duration and convexity zero by choosing P 1 P_1 P1 and P 2 P_2 P2 so that:

V × D V + P 1 D 1 + P 2 D 2 = 0 V\times D_V+P_1D_1+P_2D_2=0 V×DV+P1D1+P2D2=0

V × C V + P 1 C 1 + P 2 C 2 = 0 V\times C_V+P_1C_1+P_2C_2=0 V×CV+P1C1+P2C2=0

The position is hedged against relatively large parallel shifts in the term structure. However, it will still have exposure to non-parallel shifts.

An investor has a bond position worth USD 20 , 000 20,000 20,000 with a duration of 7 7 7 and a convexity of 33 33 33. Two bonds are available for hedging. Bond A has a duration of 10 10 10 and a convexity of 80 80 80. Bond B has a duration of six and a convexity of 25 25 25. How can a duration plus convexity hedge be set up?

{ 10 P A + 6 P B + 20 , 000 × 7 = 0 80 P A + 25 P B + 20 , 000 × 33 = 0 → { P A = − 2 , 000 P B = − 20 , 000 \begin{cases}10P_A+6P_B+20,000\times7=0\\ 80P_A+25P_B+20,000\times33=0\end{cases}\to \begin{cases} P_A=-2,000\\P_B=-20,000\end{cases} {10PA+6PB+20,000×7=080PA+25PB+20,000×33=0{PA=2,000PB=20,000

A short position A of USD 2 , 000 2,000 2,000 and a short position B of USD 20 , 000 20,000 20,000 are required.

这篇关于4.1.5 Duration and Convexity的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/329315

相关文章

【CSS in Depth 2 精译_023】第四章概述 + 4.1 Flexbox 布局的基本原理

当前内容所在位置(可进入专栏查看其他译好的章节内容) 第一章 层叠、优先级与继承(已完结) 1.1 层叠1.2 继承1.3 特殊值1.4 简写属性1.5 CSS 渐进式增强技术1.6 本章小结 第二章 相对单位(已完结) 2.1 相对单位的威力2.2 em 与 rem2.3 告别像素思维2.4 视口的相对单位2.5 无单位的数值与行高2.6 自定义属性2.7 本章小结 第三章 文档流与盒模型(已

FFmpeg源码:compute_frame_duration函数分析

一、compute_frame_duration函数的定义 compute_frame_duration函数定义在FFmpeg源码(本文演示用的FFmpeg源码版本为7.0.1)的源文件libavformat/demux.c中: /*** Return the frame duration in seconds. Return 0 if not available.*/static void

OMNeT++4.1基本操作指南(1):安装

声明: 1、本安装指南参考了OMNeT++官方网站(http://www.omnetpp.org/)提供的4.1版本下载页面(http://www.omnetpp.org/omnetpp/doc_details/2218-omnet-41-win32-source--ide--mingw-zip)InstallGider(http://www.omnetpp.org/doc/omnetpp41/

【 OpenHarmony 4.1 Launcher 源码解析 】-- 初体验

前言 最近因为业务需要,需要做一款 UI 定制的鸿蒙 Launcher,于是就开始了「找到代码」、「研究代码」、「魔改代码」的套路流程,仅以此文章作为知识备份和技术探讨所用,也希望能给其他小伙伴提供一些源码的解析思路,方法大家各自魔改! 一、官方简介 Gitee codes:应用子系统/Launcher Launcher 作为系统人机交互的首要入口,提供应用图标的显示、点击启动、卸载应

Android studio 4.1 不显示光标当前的类名、方法名

解决方法: 1.只让当前页面显示 结果如下: 2.修改设置,所有打开的文件都显示 打开setting 搜索 breadcrumbs

RFC6455-The WebSocket protocol 之四:Opening Handshake 4.1. Client Requirements

4.Opening Handshake 4.1. Client Requirements 第四章:握手 第一节:客户端的要求 To _Establish a WebSocket Connection_, a client opens a connection and sends a handshake as defined in this section. A connect

4.1 版本管理器——2PL与MVCC

2PL协议 2PL(Two-Phase Locking,两阶段锁协议)是数据库管理系统中用于确保事务调度正确性的常见并发控制协议。它通过锁机制来管理事务对数据库资源的访问,确保事务之间不会发生冲突。2PL协议可以分为以下两个阶段: 扩展阶段(Growing Phase):在这个阶段,事务可以请求获得锁定(如共享锁或排他锁),但不能释放任何锁。事务可以随着操作的进行逐步获取更多的锁,但一旦进入

4.1 python xlwings选取单元格

要执行单元格的相关操作,首先需要选取单元格,在xlwings模块中的对应操作则是创建Range对象。Range对象代表一个单元格区域,其中包含一个或多个单元格。 4.1.1 range()函数–根据地址选取单元格区域 Sheet对象的range()函数用于根据指定的地址选取单元格区域,得到对应的Range对象,这是xlwings模块中创建Range对象最基本的方法。 表达式.range(ar

NXP i.MX8系列平台开发讲解 - 4.1.3 GNSS 篇(三) - 定位模块与协议介绍

专栏文章目录传送门:返回专栏目录 Hi, 我是你们的老朋友,主要专注于嵌入式软件开发,有兴趣不要忘记点击关注【码思途远】 文章目录 目录 1. 定位模块介绍 1.1 Ublox M8N参数认识 1.2 GNSS 选型指导 2.评估软件 2.1 u-center2 2.2 Teseo-suite 2.3 其他软件 3. NMEA 协议 4. 总结 关注+星号

4.1栈和队列基本概念+经典OJ题

本篇博客来梳理栈和队列基本概念以及一道经典OJ题,题目已插入超链接,点击即可跳转~ 一、栈的相关概念 1.栈 一种特殊的线性表,只允许在固定的一端插入和删除元素,栈中的数据遵循后进先出原则 (1)栈顶:进行数据插入和删除操作的一端 (2)栈底:栈顶的另一端 2.压栈:栈的插入操作 3.出栈:栈的删除操作 4.栈的实现:用数组较优,原因是数组尾插代价比较小 (1)Stack.h