基于蜜獾算法的函数寻优算法

2023-11-02 06:10
文章标签 算法 函数 寻优

本文主要是介绍基于蜜獾算法的函数寻优算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、理论基础
    • 1、蜜獾算法
      • 1.1 初始化阶段
      • 1.2 定义强度 I I I
      • 1.3 更新密度因子
      • 1.4 跳出局部最优
      • 1.5 更新个体位置
        • 1.5.1 挖掘阶段
        • 1.5.2 采蜜阶段
    • 2、算法伪代码
  • 二、仿真实验与分析
  • 三、参考文献

一、理论基础

蜜獾算法(HBA)模拟了蜜獾的觅食行为。为了找到食物源,蜜獾要么嗅、挖,要么跟随蜜獾。第一种行为为挖掘模式,而第二种行为为采蜜模式。在挖掘模式中,它利用自己的嗅觉来确定猎物的大致位置;当到达那里时,它会绕着猎物移动,以选择合适的位置来挖掘和捕捉猎物。在采蜜模式中,蜜獾利用引导獾的位置直接定位蜂巢。

1、蜜獾算法

1.1 初始化阶段

根据式(1)初始化蜜獾的数量(种群规模)和个体的位置: x i = l b i + r 1 × ( u b i − l b i ) (1) x_i=lb_i+r_1×(ub_i-lb_i)\tag{1} xi=lbi+r1×(ubilbi)(1)其中, r 1 r_1 r1 ( 0 , 1 ) (0,1) (0,1)内的随机数; x i x_i xi N N N个候选个体的第 i i i个个体的位置; l b i lb_i lbi u b i ub_i ubi分别为搜索空间的下界和上界。

1.2 定义强度 I I I

强度和猎物的集中力以及和蜜獾之间的距离有关。 I i I_i Ii是猎物的气味强度;如果气味高,则运动速度快,反之亦然。如式(2)计算所示: I i = r 2 × S 4 π d i 2 S = ( x i − x i + 1 ) 2 d i = x p r e y − x i (2) \begin{aligned}&I_i=r_2×\frac{S}{4\pi d_i^2}\\&S=(x_i-x_{i+1})^2\\&d_i=x_{prey}-x_i\end{aligned}\tag{2} Ii=r2×4πdi2SS=(xixi+1)2di=xpreyxi(2)其中, S S S是源强度或集中强度; d i d_i di表示猎物与当前蜜獾个体的距离。

1.3 更新密度因子

密度因子 α \alpha α控制时变随机化,以确保从勘探到开采的平稳过渡。使用式(3)更新随迭代次数减少的递减因子 α \alpha α,以随时间减少随机化。 α = C × exp ⁡ ( − t t max ⁡ ) (3) \alpha=C×\exp\left(\frac{-t}{t_{\max}}\right)\tag{3} α=C×exp(tmaxt)(3)其中, t max ⁡ t_{\max} tmax为最大迭代次数; C C C是一个大于等于1的常数(默认为2)。

1.4 跳出局部最优

这一步和接下来的两步用于跳出局部最优区域。在这种情况下,所提出的算法使用了一个改变搜索方向的标志 F F F,以利用大量机会让搜索个体严格扫描搜索空间。

1.5 更新个体位置

如前所述,HBA位置更新过程( x n e w x_{new} xnew)分为两个部分,即“挖掘阶段”和“采蜜阶段”。下面给出解释:

1.5.1 挖掘阶段

在挖掘阶段,蜜獾执行类似于心脏线形状的动作。心形运动可通过式(4)进行模拟: x n e w = x p r e y + F × β × I × x p r e y + F × r 3 × α × d i × ∣ cos ⁡ ( 2 π r 4 ) × [ 1 − cos ⁡ ( 2 π r 5 ) ] ∣ (4) x_{new}=x_{prey}+F×\beta×I×x_{prey}+F×r_3×\alpha×d_i×|\cos(2\pi r_4)×[1-\cos(2\pi r_5)]|\tag{4} xnew=xprey+F×β×I×xprey+F×r3×α×di×cos(2πr4)×[1cos(2πr5)](4)其中, x p r e y x_{prey} xprey是到目前为止全局最优位置; β ≥ 1 \beta≥1 β1(默认为6)是蜜獾获取食物的能力; d i d_i di为猎物与当前蜜獾个体的距离,见式(2); r 3 r_3 r3 r 4 r_4 r4 r 5 r_5 r5 ( 0 , 1 ) (0,1) (0,1)之间的三个不同的随机数; F F F为改变搜索方向的标志,使用式(5)确定: F = { 1 if r 6 ≤ 0.5 − 1 else (5) F=\begin{dcases}1\quad\,\,\,\,\, \text{if}\,\, r_6≤0.5\\-1\quad\text{else}\end{dcases}\tag{5} F={1ifr60.51else(5)在挖掘阶段,蜜獾严重依赖于猎物的气味强度、与猎物之间的距离以及时变搜索影响因子 α \alpha α。此外,在挖掘活动中,獾可能会受到任何干扰,从而使其无法找到更好的猎物位置。

1.5.2 采蜜阶段

蜂蜜獾跟随蜂蜜向导獾到达蜂巢的情况可模拟为式(6): x n e w = x p r e y + F × r 7 × α × d i (6) x_{new}=x_{prey}+F×r_7×\alpha×d_i\tag{6} xnew=xprey+F×r7×α×di(6)其中, x n e w x_{new} xnew为更新后的蜜獾个体位置; x p r e y x_{prey} xprey为猎物位置; F F F α \alpha α分别由式(5)和式(3)确定; r 7 r_7 r7 ( 0 , 1 ) (0,1) (0,1)之间的随机数。从式(6)可以观察到,根据距离信息 d i d_i di,蜜獾在猎物位置 x p r e y x_{prey} xprey附近进行搜索。在这一阶段,搜索受到随迭代变化的搜索行为 α \alpha α的影响。此外,一只蜜獾可能会受到 F F F干扰。

2、算法伪代码

HBA算法伪代码如图1所示。在这里插入图片描述

图1 HBA算法伪代码

二、仿真实验与分析

以常用23个测试函数中的F1、F2(单峰函数/30维)、F9、F10(多峰函数/30维)、F16、F17(固定维度的多峰函数/2维)为例,将HBA算法分别与花授粉算法(FPA)、鲸鱼优化算法(WOA)、飞蛾火焰优化算法(MFO)、正弦余弦算法(SCA)以及灰狼优化算法(GWO)进行对比,设置种群规模为30,最大迭代次数为1000,每个算法独立运行30次。
结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F1
FPA:最差值: 0.45312,最优值:0.059663,平均值:0.1572,标准差:0.078226
WOA:最差值: 3.8468e-153,最优值:1.787e-166,平均值:1.586e-154,标准差:7.0824e-154
MFO:最差值: 20000,最优值:2.7671e-05,平均值:2000.0023,标准差:4842.341
SCA:最差值: 0.083351,最优值:6.3116e-09,平均值:0.0063474,标准差:0.015506
GWO:最差值: 1.1638e-57,最优值:1.9593e-62,平均值:6.8682e-59,标准差:2.1017e-58
HBA:最差值: 4.9384e-276,最优值:1.0454e-286,平均值:2.4754e-277,标准差:0
函数:F2
FPA:最差值: 1.1249,最优值:0.2083,平均值:0.50268,标准差:0.18398
WOA:最差值: 2.6492e-103,最优值:1.9096e-112,平均值:1.0355e-104,标准差:4.8313e-104
MFO:最差值: 90,最优值:0.00069882,平均值:37.3337,标准差:23.9151
SCA:最差值: 0.002434,最优值:3.5521e-08,平均值:9.9781e-05,标准差:0.00044213
GWO:最差值: 3.9706e-34,最优值:2.1175e-35,平均值:1.1445e-34,标准差:1.0969e-34
HBA:最差值: 2.715e-142,最优值:4.052e-151,平均值:9.0628e-144,标准差:4.9566e-143
函数:F9
FPA:最差值: 139.1564,最优值:91.7519,平均值:115.611,标准差:11.7281
WOA:最差值: 0,最优值:0,平均值:0,标准差:0
MFO:最差值: 236.1595,最优值:85.5661,平均值:162.5257,标准差:35.7019
SCA:最差值: 128.5608,最优值:4.0412e-05,平均值:26.6363,标准差:35.3467
GWO:最差值: 6.3307,最优值:0,平均值:0.4363,标准差:1.4463
HBA:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F10
FPA:最差值: 13.6963,最优值:0.36228,平均值:5.4049,标准差:3.7088
WOA:最差值: 7.9936e-15,最优值:8.8818e-16,平均值:3.7303e-15,标准差:1.9571e-15
MFO:最差值: 19.964,最优值:1.5018,平均值:16.9922,标准差:5.3634
SCA:最差值: 20.3051,最优值:0.00051109,平均值:17.0372,标准差:6.5228
GWO:最差值: 2.2204e-14,最优值:1.1546e-14,平均值:1.6165e-14,标准差:2.9724e-15
HBA:最差值: 19.9418,最优值:8.8818e-16,平均值:0.66473,标准差:3.6409
函数:F16
FPA:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:6.2532e-16
WOA:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:1.7865e-11
MFO:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:6.7752e-16
SCA:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:1.9964e-05
GWO:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:6.8281e-09
HBA:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:6.2532e-16
函数:F17
FPA:最差值: 0.39789,最优值:0.39789,平均值:0.39789,标准差:0
WOA:最差值: 0.3979,最优值:0.39789,平均值:0.39789,标准差:2.0598e-06
MFO:最差值: 0.39789,最优值:0.39789,平均值:0.39789,标准差:0
SCA:最差值: 0.40065,最优值:0.39791,平均值:0.39864,标准差:0.00065531
GWO:最差值: 0.39789,最优值:0.39789,平均值:0.39789,标准差:1.9543e-07
HBA:最差值: 0.39789,最优值:0.39789,平均值:0.39789,标准差:0

结果表明,HBA算法具有更快的收敛速度、更高的收敛精度以及更好的寻优能力。

三、参考文献

[1] Fatma A. Hashim, Essam H. Houssein, Kashif Hussain, et al. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems[J]. Mathematics and Computers in Simulation, 2021: 84-110.

这篇关于基于蜜獾算法的函数寻优算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/328651

相关文章

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.