基于蜜獾算法的函数寻优算法

2023-11-02 06:10
文章标签 算法 函数 寻优

本文主要是介绍基于蜜獾算法的函数寻优算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、理论基础
    • 1、蜜獾算法
      • 1.1 初始化阶段
      • 1.2 定义强度 I I I
      • 1.3 更新密度因子
      • 1.4 跳出局部最优
      • 1.5 更新个体位置
        • 1.5.1 挖掘阶段
        • 1.5.2 采蜜阶段
    • 2、算法伪代码
  • 二、仿真实验与分析
  • 三、参考文献

一、理论基础

蜜獾算法(HBA)模拟了蜜獾的觅食行为。为了找到食物源,蜜獾要么嗅、挖,要么跟随蜜獾。第一种行为为挖掘模式,而第二种行为为采蜜模式。在挖掘模式中,它利用自己的嗅觉来确定猎物的大致位置;当到达那里时,它会绕着猎物移动,以选择合适的位置来挖掘和捕捉猎物。在采蜜模式中,蜜獾利用引导獾的位置直接定位蜂巢。

1、蜜獾算法

1.1 初始化阶段

根据式(1)初始化蜜獾的数量(种群规模)和个体的位置: x i = l b i + r 1 × ( u b i − l b i ) (1) x_i=lb_i+r_1×(ub_i-lb_i)\tag{1} xi=lbi+r1×(ubilbi)(1)其中, r 1 r_1 r1 ( 0 , 1 ) (0,1) (0,1)内的随机数; x i x_i xi N N N个候选个体的第 i i i个个体的位置; l b i lb_i lbi u b i ub_i ubi分别为搜索空间的下界和上界。

1.2 定义强度 I I I

强度和猎物的集中力以及和蜜獾之间的距离有关。 I i I_i Ii是猎物的气味强度;如果气味高,则运动速度快,反之亦然。如式(2)计算所示: I i = r 2 × S 4 π d i 2 S = ( x i − x i + 1 ) 2 d i = x p r e y − x i (2) \begin{aligned}&I_i=r_2×\frac{S}{4\pi d_i^2}\\&S=(x_i-x_{i+1})^2\\&d_i=x_{prey}-x_i\end{aligned}\tag{2} Ii=r2×4πdi2SS=(xixi+1)2di=xpreyxi(2)其中, S S S是源强度或集中强度; d i d_i di表示猎物与当前蜜獾个体的距离。

1.3 更新密度因子

密度因子 α \alpha α控制时变随机化,以确保从勘探到开采的平稳过渡。使用式(3)更新随迭代次数减少的递减因子 α \alpha α,以随时间减少随机化。 α = C × exp ⁡ ( − t t max ⁡ ) (3) \alpha=C×\exp\left(\frac{-t}{t_{\max}}\right)\tag{3} α=C×exp(tmaxt)(3)其中, t max ⁡ t_{\max} tmax为最大迭代次数; C C C是一个大于等于1的常数(默认为2)。

1.4 跳出局部最优

这一步和接下来的两步用于跳出局部最优区域。在这种情况下,所提出的算法使用了一个改变搜索方向的标志 F F F,以利用大量机会让搜索个体严格扫描搜索空间。

1.5 更新个体位置

如前所述,HBA位置更新过程( x n e w x_{new} xnew)分为两个部分,即“挖掘阶段”和“采蜜阶段”。下面给出解释:

1.5.1 挖掘阶段

在挖掘阶段,蜜獾执行类似于心脏线形状的动作。心形运动可通过式(4)进行模拟: x n e w = x p r e y + F × β × I × x p r e y + F × r 3 × α × d i × ∣ cos ⁡ ( 2 π r 4 ) × [ 1 − cos ⁡ ( 2 π r 5 ) ] ∣ (4) x_{new}=x_{prey}+F×\beta×I×x_{prey}+F×r_3×\alpha×d_i×|\cos(2\pi r_4)×[1-\cos(2\pi r_5)]|\tag{4} xnew=xprey+F×β×I×xprey+F×r3×α×di×cos(2πr4)×[1cos(2πr5)](4)其中, x p r e y x_{prey} xprey是到目前为止全局最优位置; β ≥ 1 \beta≥1 β1(默认为6)是蜜獾获取食物的能力; d i d_i di为猎物与当前蜜獾个体的距离,见式(2); r 3 r_3 r3 r 4 r_4 r4 r 5 r_5 r5 ( 0 , 1 ) (0,1) (0,1)之间的三个不同的随机数; F F F为改变搜索方向的标志,使用式(5)确定: F = { 1 if r 6 ≤ 0.5 − 1 else (5) F=\begin{dcases}1\quad\,\,\,\,\, \text{if}\,\, r_6≤0.5\\-1\quad\text{else}\end{dcases}\tag{5} F={1ifr60.51else(5)在挖掘阶段,蜜獾严重依赖于猎物的气味强度、与猎物之间的距离以及时变搜索影响因子 α \alpha α。此外,在挖掘活动中,獾可能会受到任何干扰,从而使其无法找到更好的猎物位置。

1.5.2 采蜜阶段

蜂蜜獾跟随蜂蜜向导獾到达蜂巢的情况可模拟为式(6): x n e w = x p r e y + F × r 7 × α × d i (6) x_{new}=x_{prey}+F×r_7×\alpha×d_i\tag{6} xnew=xprey+F×r7×α×di(6)其中, x n e w x_{new} xnew为更新后的蜜獾个体位置; x p r e y x_{prey} xprey为猎物位置; F F F α \alpha α分别由式(5)和式(3)确定; r 7 r_7 r7 ( 0 , 1 ) (0,1) (0,1)之间的随机数。从式(6)可以观察到,根据距离信息 d i d_i di,蜜獾在猎物位置 x p r e y x_{prey} xprey附近进行搜索。在这一阶段,搜索受到随迭代变化的搜索行为 α \alpha α的影响。此外,一只蜜獾可能会受到 F F F干扰。

2、算法伪代码

HBA算法伪代码如图1所示。在这里插入图片描述

图1 HBA算法伪代码

二、仿真实验与分析

以常用23个测试函数中的F1、F2(单峰函数/30维)、F9、F10(多峰函数/30维)、F16、F17(固定维度的多峰函数/2维)为例,将HBA算法分别与花授粉算法(FPA)、鲸鱼优化算法(WOA)、飞蛾火焰优化算法(MFO)、正弦余弦算法(SCA)以及灰狼优化算法(GWO)进行对比,设置种群规模为30,最大迭代次数为1000,每个算法独立运行30次。
结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F1
FPA:最差值: 0.45312,最优值:0.059663,平均值:0.1572,标准差:0.078226
WOA:最差值: 3.8468e-153,最优值:1.787e-166,平均值:1.586e-154,标准差:7.0824e-154
MFO:最差值: 20000,最优值:2.7671e-05,平均值:2000.0023,标准差:4842.341
SCA:最差值: 0.083351,最优值:6.3116e-09,平均值:0.0063474,标准差:0.015506
GWO:最差值: 1.1638e-57,最优值:1.9593e-62,平均值:6.8682e-59,标准差:2.1017e-58
HBA:最差值: 4.9384e-276,最优值:1.0454e-286,平均值:2.4754e-277,标准差:0
函数:F2
FPA:最差值: 1.1249,最优值:0.2083,平均值:0.50268,标准差:0.18398
WOA:最差值: 2.6492e-103,最优值:1.9096e-112,平均值:1.0355e-104,标准差:4.8313e-104
MFO:最差值: 90,最优值:0.00069882,平均值:37.3337,标准差:23.9151
SCA:最差值: 0.002434,最优值:3.5521e-08,平均值:9.9781e-05,标准差:0.00044213
GWO:最差值: 3.9706e-34,最优值:2.1175e-35,平均值:1.1445e-34,标准差:1.0969e-34
HBA:最差值: 2.715e-142,最优值:4.052e-151,平均值:9.0628e-144,标准差:4.9566e-143
函数:F9
FPA:最差值: 139.1564,最优值:91.7519,平均值:115.611,标准差:11.7281
WOA:最差值: 0,最优值:0,平均值:0,标准差:0
MFO:最差值: 236.1595,最优值:85.5661,平均值:162.5257,标准差:35.7019
SCA:最差值: 128.5608,最优值:4.0412e-05,平均值:26.6363,标准差:35.3467
GWO:最差值: 6.3307,最优值:0,平均值:0.4363,标准差:1.4463
HBA:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F10
FPA:最差值: 13.6963,最优值:0.36228,平均值:5.4049,标准差:3.7088
WOA:最差值: 7.9936e-15,最优值:8.8818e-16,平均值:3.7303e-15,标准差:1.9571e-15
MFO:最差值: 19.964,最优值:1.5018,平均值:16.9922,标准差:5.3634
SCA:最差值: 20.3051,最优值:0.00051109,平均值:17.0372,标准差:6.5228
GWO:最差值: 2.2204e-14,最优值:1.1546e-14,平均值:1.6165e-14,标准差:2.9724e-15
HBA:最差值: 19.9418,最优值:8.8818e-16,平均值:0.66473,标准差:3.6409
函数:F16
FPA:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:6.2532e-16
WOA:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:1.7865e-11
MFO:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:6.7752e-16
SCA:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:1.9964e-05
GWO:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:6.8281e-09
HBA:最差值: -1.0316,最优值:-1.0316,平均值:-1.0316,标准差:6.2532e-16
函数:F17
FPA:最差值: 0.39789,最优值:0.39789,平均值:0.39789,标准差:0
WOA:最差值: 0.3979,最优值:0.39789,平均值:0.39789,标准差:2.0598e-06
MFO:最差值: 0.39789,最优值:0.39789,平均值:0.39789,标准差:0
SCA:最差值: 0.40065,最优值:0.39791,平均值:0.39864,标准差:0.00065531
GWO:最差值: 0.39789,最优值:0.39789,平均值:0.39789,标准差:1.9543e-07
HBA:最差值: 0.39789,最优值:0.39789,平均值:0.39789,标准差:0

结果表明,HBA算法具有更快的收敛速度、更高的收敛精度以及更好的寻优能力。

三、参考文献

[1] Fatma A. Hashim, Essam H. Houssein, Kashif Hussain, et al. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems[J]. Mathematics and Computers in Simulation, 2021: 84-110.

这篇关于基于蜜獾算法的函数寻优算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/328651

相关文章

C语言字符函数和字符串函数示例详解

《C语言字符函数和字符串函数示例详解》本文详细介绍了C语言中字符分类函数、字符转换函数及字符串操作函数的使用方法,并通过示例代码展示了如何实现这些功能,通过这些内容,读者可以深入理解并掌握C语言中的字... 目录一、字符分类函数二、字符转换函数三、strlen的使用和模拟实现3.1strlen函数3.2st

MySQL中COALESCE函数示例详解

《MySQL中COALESCE函数示例详解》COALESCE是一个功能强大且常用的SQL函数,主要用来处理NULL值和实现灵活的值选择策略,能够使查询逻辑更清晰、简洁,:本文主要介绍MySQL中C... 目录语法示例1. 替换 NULL 值2. 用于字段默认值3. 多列优先级4. 结合聚合函数注意事项总结C

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Java8需要知道的4个函数式接口简单教程

《Java8需要知道的4个函数式接口简单教程》:本文主要介绍Java8中引入的函数式接口,包括Consumer、Supplier、Predicate和Function,以及它们的用法和特点,文中... 目录什么是函数是接口?Consumer接口定义核心特点注意事项常见用法1.基本用法2.结合andThen链

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、

golang panic 函数用法示例详解

《golangpanic函数用法示例详解》在Go语言中,panic用于触发不可恢复的错误,终止函数执行并逐层向上触发defer,最终若未被recover捕获,程序会崩溃,recover用于在def... 目录1. panic 的作用2. 基本用法3. recover 的使用规则4. 错误处理建议5. 常见错

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE