hiho一下116周 网络流

2023-11-02 03:40
文章标签 网络 一下 116 hiho

本文主要是介绍hiho一下116周 网络流,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

网络流二·最大流最小割定理

时间限制: 10000ms
单点时限: 1000ms
内存限制: 256MB
描述

小Hi:在上一周的Hiho一下中我们初步讲解了网络流的概念以及常规解法,小Ho你还记得内容么?

小Ho:我记得!网络流就是给定了一张图G=(V,E),以及源点s和汇点t。每一条边e(u,v)具有容量c(u,v)。网络流的最大流问题求解的就是从s到t最多能有多少流量。

小Hi:那这个问题解决办法呢?

小Ho:解决网络流的基本思路就是寻找增广路,不断更新残留网络。直到找不到新的增广路,此时得到的流就是该网络的最大流。

小Hi:没错,看来你记得很牢嘛。

小Ho:哎嘿嘿,不过这里我有一个问题,为什么找不到增广路时就已经找到了最大流呢?

小Hi:这一次我就来解决你的疑惑,首先我们要从网络流的割开始讲起。

对于一个网络流图G=(V,E),其割的定义为一种点的划分方式:将所有的点划分为S和T=V-S两个部分,其中源点s∈S,汇点t∈T。

对于一个割(S,T),我们定义净流f(S,T)表示穿过割(S,T)的流量之和,即:

f(S,T) = Σf(u,v) | u∈S,v∈T

举个例子(该例子选自算法导论):

净流f = f(2,4)+f(3,4)+f(3,5) = 12+(-4)+11 = 19

同时我们定义割的容量C(S,T)为所有从S到T的边容量之和,即:

C(S,T) = Σc(u,v) | u∈S,v∈T

同样在上面的例子中,其割的容量为:

c(2,4)+c(3,5)=12+11=23

小Ho:也就是说在计算割(S,T)的净流f(S,T)时可能存在反向的流使得f(u,v)<0,而容量C(S,T)一定是非负数。

小Hi:你这么说也没错。实际上对于任意一个割的净流f(S,T)总是和网络流的流量f相等。比如上面例子中我们改变一下割的方式:

可以计算出对于这两种情况净流f(S,T)仍然等于19。

一个直观的解释是:根据网络流的定义,只有源点s会产生流量,汇点t会接收流量。因此任意非s和t的点u,其净流量一定为0,也即是Σ(f(u,v))=0。而源点s的流量最终都会通过割(S,T)的边到达汇点t,所以网络流的流f等于割的静流f(S,T)。

严格的证明如下:

f(S,T) = f(S,V) - f(S,S)
从S到T的流等于从S到所有节点的流减去从S到S内部节点的流
f(S,T) = f(S,V)
由于S内部的节点之间存在的流一定有对应的反向流,因此f(S,S)=0
f(S,T) = f(s,V) + f(S-s,V)
再将S集合分成源点s和其他属于S的节点
f(S,T) = f(s,V)
由于除了源点s以外其他节点不会产生流,因此f(S-s,V)=0
f(S,T) = f(s,V) = f

所以f(S,T)等于从源点s出来的流,也就是网络的流f。

小Ho:简单理解的话,也就是说任意一个割的净流f(S,T)都等于当前网络的流量f

小Hi:是这样的。而对于任意一个割的净流f(S,T)一定是小于等于割的容量C(S,T)。那也即是,对于网络的任意一个流f一定是小于等于任意一个割的容量C(S,T)。

而在所有可能的割中,存在一个容量最小的割,我们称其为最小割

这个最小割限制了一个网络的流f上界,所以有:

对于任一个网络流图来说,其最大流一定是小于等于最小割的。

小Ho:但是这和增广路又有什么关系呢?

小Hi:接下来就是重点了。利用上面讲的知识,我们可以推出一个最大流最小割定理

对于一个网络流图G=(V,E),其中有源点s和汇点t,那么下面三个条件是等价的:
1. 流f是图G的最大流
2. 残留网络Gf不存在增广路
3. 对于G的某一个割(S,T),此时f = C(S,T)

首先证明1 => 2

我们利用反证法,假设流f是图G的最大流,但是残留网络中还存在有增广路p,其流量为fp。则我们有流f'=f+fp>f。这与f是最大流产生矛盾。

接着证明2 => 3

假设残留网络Gf不存在增广路,所以在残留网络Gf中不存在路径从s到达t。我们定义S集合为:当前残留网络中s能够到达的点。同时定义T=V-S。
此时(S,T)构成一个割(S,T)。且对于任意的u∈S,v∈T,有f(u,v)=c(u,v)。若f(u,v)<c(u,v),则有Gf(u,v)>0,s可以到达v,与v属于T矛盾。
因此有f(S,T)=Σf(u,v)=Σc(u,v)=C(S,T)。

最后证明3 => 1

由于f的上界为最小割,当f到达割的容量时,显然就已经到达最大值,因此f为最大流。

这样就说明了为什么找不到增广路时,所求得的一定是最大流。

小Ho:原来是这样,我明白了。

输入

第1行:2个正整数N,M。2≤N≤500,1≤M≤20,000。

第2..M+1行:每行3个整数u,v,c(u,v),表示一条边(u,v)及其容量c(u,v)。1≤u,v≤N,0≤c(u,v)≤100。

给定的图中默认源点为1,汇点为N。可能有重复的边。

输出

第1行:2个整数A B,A表示最小割的容量,B表示给定图G最小割S集合的点数。

第2行:B个空格隔开的整数,表示S集合的点编号。

若存在多个最小割可以输出任意一个的解。

样例输入
6 7
1 2 3
1 3 5
2 4 1
3 4 2
3 5 3
4 6 4
5 6 2
样例输出
5 4
1 2 3 5
【分析】又封装了一个网络流Dinic模板。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 0x3f3f3f3f
#define mod 10000
typedef long long ll;
using namespace std;
const int N=505;
const int M=40005;
int s,t,n,m,vs,vt;
int d[N];
int vis[N];
bool flag=false;
struct Dinic {int s,t;struct Edge {int nxt,to,cap,flow;} edg[M];vector<int>ans;int tot=0;bool vis[N];int d[N];int h[N];int cur[N];void init() {memset(h,-1,sizeof h);}void AddEdge(int x,int y,int z) {edg[tot].to=y;edg[tot].nxt=h[x];edg[tot].cap=z;h[x]=tot++;edg[tot].to=x;edg[tot].nxt=h[y];h[y]=tot++;}bool BFS() {memset(vis,0,sizeof(vis));queue<int>q;q.push(s);d[s]=0;vis[s]=1;if(flag)ans.push_back(s);while (!q.empty()) {int x = q.front();q.pop();for (int i = h[x]; i!=-1; i=edg[i].nxt) {int v=edg[i].to;if (!vis[v] && edg[i].cap > edg[i].flow) {vis[v]=1;d[v] = d[x]+1;q.push(v);if(flag)ans.push_back(v);}}}return vis[t];}int DFS(int x,int a) {if (x==t || a==0)return a;int flow = 0,f;for(int &i=cur[x]; i!=-1; i=edg[i].nxt) {int v=edg[i].to;if (d[x]+1 == d[v] && (f=DFS(v,min(a,edg[i].cap-edg[i].flow)))>0) {edg[i].flow+=f;edg[i^1].flow-=f;flow+=f;a-=f;if (a==0)break;}}return flow;}int Maxflow(int s,int t) {this->s=s;this->t=t;int flow = 0;while (BFS()) {for(int i=0; i<=n; i++)cur[i]=h[i];flow+=DFS(s,inf);}return flow;}} dc;int main() {scanf("%d%d",&n,&m);dc.init();for(int i = 1; i<=m; i++) {int u,v,di;scanf("%d%d%d",&u,&v,&di);dc.AddEdge(u,v,di);}s=1,t=n;printf("%d ",dc.Maxflow(s,t));flag=true;dc.BFS();printf("%d\n%d",dc.ans.size(),dc.ans[0]);for(int i=1; i<dc.ans.size(); i++)printf(" %d",dc.ans[i]);printf("\n");return 0;
}
View Code

 

转载于:https://www.cnblogs.com/jianrenfang/p/5888157.html

这篇关于hiho一下116周 网络流的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/327856

相关文章

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

poj 3181 网络流,建图。

题意: 农夫约翰为他的牛准备了F种食物和D种饮料。 每头牛都有各自喜欢的食物和饮料,而每种食物和饮料都只能分配给一头牛。 问最多能有多少头牛可以同时得到喜欢的食物和饮料。 解析: 由于要同时得到喜欢的食物和饮料,所以网络流建图的时候要把牛拆点了。 如下建图: s -> 食物 -> 牛1 -> 牛2 -> 饮料 -> t 所以分配一下点: s  =  0, 牛1= 1~

poj 3068 有流量限制的最小费用网络流

题意: m条有向边连接了n个仓库,每条边都有一定费用。 将两种危险品从0运到n-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。 求最小的费用是多少。 解析: 抽象出一个源点s一个汇点t,源点与0相连,费用为0,容量为2。 汇点与n - 1相连,费用为0,容量为2。 每条边之间也相连,费用为每条边的费用,容量为1。 建图完毕之后,求一条流量为2的最小费用流就行了

poj 2112 网络流+二分

题意: k台挤奶机,c头牛,每台挤奶机可以挤m头牛。 现在给出每只牛到挤奶机的距离矩阵,求最小化牛的最大路程。 解析: 最大值最小化,最小值最大化,用二分来做。 先求出两点之间的最短距离。 然后二分匹配牛到挤奶机的最大路程,匹配中的判断是在这个最大路程下,是否牛的数量达到c只。 如何求牛的数量呢,用网络流来做。 从源点到牛引一条容量为1的边,然后挤奶机到汇点引一条容量为m的边

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络 服务器端配置 在服务器端,你需要确保安装了必要的驱动程序和软件包,并且正确配置了网络接口。 安装 OFED 首先,安装 Open Fabrics Enterprise Distribution (OFED),它包含了 InfiniBand 所需的驱动程序和库。 sudo

【机器学习】高斯网络的基本概念和应用领域

引言 高斯网络(Gaussian Network)通常指的是一个概率图模型,其中所有的随机变量(或节点)都遵循高斯分布 文章目录 引言一、高斯网络(Gaussian Network)1.1 高斯过程(Gaussian Process)1.2 高斯混合模型(Gaussian Mixture Model)1.3 应用1.4 总结 二、高斯网络的应用2.1 机器学习2.2 统计学2.3

网络学习-eNSP配置NAT

NAT实现内网和外网互通 #给路由器接口设置IP地址模拟实验环境<Huawei>system-viewEnter system view, return user view with Ctrl+Z.[Huawei]undo info-center enableInfo: Information center is disabled.[Huawei]interface gigabit

【详细介绍一下GEE】

GEE(Google Earth Engine)是一个强大的云计算平台,它允许用户处理和分析大规模的地球科学数据集,如卫星图像、气候模型输出等。以下是对GEE用法的详细介绍: 一、平台访问与账户设置 访问GEE平台: 用户可以通过访问Google Earth Engine的官方网站来开始使用GEE。 创建账户: 用户需要注册并登录Google账户,然后申请访问GEE平台。申请过程可能需要提

Golang 网络爬虫框架gocolly/colly(五)

gcocolly+goquery可以非常好地抓取HTML页面中的数据,但碰到页面是由Javascript动态生成时,用goquery就显得捉襟见肘了。解决方法有很多种: 一,最笨拙但有效的方法是字符串处理,go语言string底层对应字节数组,复制任何长度的字符串的开销都很低廉,搜索性能比较高; 二,利用正则表达式,要提取的数据往往有明显的特征,所以正则表达式写起来比较简单,不必非常严谨; 三,使