推荐系统——MF及其python实现

2023-11-01 23:59
文章标签 python 实现 系统 推荐 mf

本文主要是介绍推荐系统——MF及其python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

版权声明:本文为转载文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接: https://blog.csdn.net/qq_43741312/article/details/97548944

前言

目前推荐系统中用的最多的就是矩阵分解方法,在Netflix Prize推荐系统大赛中取得突出效果。以用户-项目评分矩阵为例,矩阵分解就是预测出评分矩阵中的缺失值,然后根据预测值以某种方式向用户推荐。今天以“用户-项目评分矩阵R(M×N)”说明矩阵分解方式的原理以及python实现。

一、矩阵分解

1.案例引入

有如下R(5,4)的打分矩阵:(“-”表示用户没有打分)

其中打分矩阵R(n,m)是n行和m列,n表示user个数,m行表示item个数

那么,如何根据目前的矩阵R(5,4)如何对未打分的商品进行评分的预测(如何得到分值为0的用户的打分值)?

——矩阵分解的思想可以解决这个问题,其实这种思想可以看作是有监督的机器学习问题(回归问题)。

矩阵分解的过程中,,矩阵R可以近似表示为矩阵P与矩阵Q的乘积:

矩阵P(n,k)表示n个user和k个特征之间的关系矩阵,这k个特征是一个中间变量,矩阵Q(k,m)的转置是矩阵Q(m,k),矩阵Q(m,k)表示m个item和K个特征之间的关系矩阵,这里的k值是自己控制的,可以使用交叉验证的方法获得最佳的k值。为了得到近似的R(n,m),必须求出矩阵P和Q,如何求它们呢?

2.推导步骤

  1. 首先令:
    式子1
  2. 对于式子1的左边项,表示的是r^ 第i行,第j列的元素值,对于如何衡量,我们分解的好坏呢,式子2,给出了衡量标准,也就是损失函数,平方项损失,最后的目标,就是每一个元素(非缺失值)的e(i,j)的总和最小值
    式子2
  3. 使用梯度下降法获得修正的p和q分量:
  • 求解损失函数的负梯度
  • 根据负梯度的方向更新变量
  1. 不停迭代直到算法最终收敛(直到sum(e^2) <=阈值,即梯度下降结束条件:f(x)的真实值和预测值小于自己设定的阈值)

  2. 为了防止过拟合,增加正则化项

3.加入正则项的损失函数求解

  1. 通常在求解的过程中,为了能够有较好的泛化能力,会在损失函数中加入正则项,以对参数进行约束,加入正则L2范数的损失函数为:

    对正则化不清楚的,公式可化为:
  2. 使用梯度下降法获得修正的p和q分量:
    -求解损失函数的负梯度
  • 根据负梯度的方向更新变量

4.预测

预测利用上述的过程,我们可以得到矩阵和,这样便可以为用户 i 对商品 j 进行打分:

二、python代码实现

以下是根据上文的评分例子做的一个矩阵分解算法,并且附有代码详解。

from math import *
import numpy
import matplotlib.pyplot as pltdef matrix_factorization(R,P,Q,K,steps=5000,alpha=0.0002,beta=0.02): #矩阵因子分解函数,steps:梯度下降次数;alpha:步长;beta:β。Q=Q.T                 # .T操作表示矩阵的转置result=[]for step in range(steps): #梯度下降for i in range(len(R)):for j in range(len(R[i])):eij=R[i][j]-numpy.dot(P[i,:],Q[:,j])       # .DOT表示矩阵相乘for k in range(K):if R[i][j]>0:        #限制评分大于零P[i][k]=P[i][k]+alpha*(2*eij*Q[k][j]-beta*P[i][k])   #增加正则化,并对损失函数求导,然后更新变量PQ[k][j]=Q[k][j]+alpha*(2*eij*P[i][k]-beta*Q[k][j])   #增加正则化,并对损失函数求导,然后更新变量QeR=numpy.dot(P,Q)  e=0for i in range(len(R)):for j in range(len(R[i])):if R[i][j]>0:e=e+pow(R[i][j]-numpy.dot(P[i,:],Q[:,j]),2)      #损失函数求和for k in range(K):e=e+(beta/2)*(pow(P[i][k],2)+pow(Q[k][j],2)) #加入正则化后的损失函数求和result.append(e)if e<0.001:           #判断是否收敛,0.001为阈值breakreturn P,Q.T,resultif __name__ == '__main__':   #主函数R=[                 #原始矩阵[5,3,0,1],[4,0,0,1],[1,1,0,5],[1,0,0,4],[0,1,5,4]]R=numpy.array(R)N=len(R)    #原矩阵R的行数M=len(R[0]) #原矩阵R的列数K=3    #K值可根据需求改变P=numpy.random.rand(N,K) #随机生成一个 N行 K列的矩阵Q=numpy.random.rand(M,K) #随机生成一个 M行 K列的矩阵nP,nQ,result=matrix_factorization(R,P,Q,K)print(R)         #输出原矩阵R_MF=numpy.dot(nP,nQ.T)print(R_MF)      #输出新矩阵#画图plt.plot(range(len(result)),result)plt.xlabel("time")plt.ylabel("loss")plt.show()

这篇关于推荐系统——MF及其python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/326688

相关文章

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类