干货|Python爬取《去哪儿》攻略库,制作一份详细的旅行攻略,疫情后来一场说走就走的旅行!

本文主要是介绍干货|Python爬取《去哪儿》攻略库,制作一份详细的旅行攻略,疫情后来一场说走就走的旅行!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

去哪儿是中国领先的在线OTA网站,为消费者提供机票、酒店、会场 、度假产品的实时搜索,并提供旅游产品团购以及其他旅游信息服务。去哪儿网站上有丰富的图片、评论数据,这些大量的数据对于从事数据岗位的来说的确是一种福利,有了这些我们可以练习爬虫技能、数据分析与可视化,漂亮的图片做文案素材也是一种不错的选择。

疫情总会过去的,宅了这么久,相信很多人疫情后都会来一场说走就走的旅行。小编今天准备爬取去哪儿的攻略库,并制作了一份详细的数据分析、可视化的旅行攻略。
爬取位置

网页分析

爬虫流程三步曲:

  • 打开网站,分析网页上的数据;
  • 通过F12开发者工具,获取接口是数据是html还是json,翻页是url控制还是ajax;
  • 编写代码发起网络请求,添加反爬机制、容错环节;

在这里插入图片描述
通过对网页的分析,我们有几个点是确定的:

  • 不同城市的网址不同,我们需要收集爬取城市的网址;
  • 数据在html中可以获取,我们对html进行解析;
  • 对于html的网页,我们需要边爬取保存数据;
  • 每个城市可以爬取200页,有些城市数据不足200页;
数据获取

1.确定爬取字段
在这里插入图片描述爬取数据的字段有:区域、目的地、标题、链接、攻略作者、出发日期、天数、照片数、人数、玩法、费用、阅读数、点赞数、评论数、行程等。

2.获取最大页数

def getPageNum(html):#获取总页数pageNum=1bsObj = BeautifulSoup(html,"html.parser")pageList = bsObj.find("div",attrs = {"class":"b_paging"}).find_all("a")if(pageList):pageNum = pageList[-2].textreturn int(pageNum)

3.解析网页

link = "https://travel.qunar.com" + book.h2.a["href"]
#标题
title = book.h2.a.text
places = book.findAll("p", attrs = {"class":"places"})
#行程
if len(places)>1:trip_places = places[1].text
else:trip_places=places[0].textuser_info = book.find("p", attrs = {"class":"user_info"})
intro = user_info.find("span", attrs = {"class":"intro"})
#作者
user_name = intro.find("span", attrs = {"class":"user_name"}).text
#print("user_name:",user_name)
date = intro.find("span", attrs = {"class":"date"}).text
#天数
days = intro.find("span", attrs = {"class":"days"}).text
#照片数
photoTmp = intro.find("span", attrs = {"class":"photo_nums"})
if(photoTmp):photo_nums = photoTmp.text
else:photo_nums = "没有照片"
# 人数
peopleTmp = intro.find("span", attrs = {"class":"people"})
if(peopleTmp):people = peopleTmp.text
else:people = ""

通过上述3步,小编已经将去哪儿的数据爬取下来了。看着是不是很简单,不过看似简单,实操起来未必就这么简单哦。实践出真知,慢慢体会爬虫过程中的要点和注意点。下面是成果展示
在这里插入图片描述

数据预处理

至此我们已经获取了数据。旅行是为了放松心情、体验地方特色。为了一场完美的旅行,制作一份详细的旅行攻略是必不可少的。

对于获取的数据,我们需要进行进一步的处理以满足分析的需求,主要做的数据处理步骤如下:

  • 删除重复值
  • 修正字段
  • 删除不需要字段

具体代码实现

#数据读取
import pandas as pd
import re
#数据读取
base_data =  pd.read_excel('trip_data_merge.xlsx')
#删除重复值
base_data.drop_duplicates(inplace=True)
#分析中不需要的字段
base_data = base_data.drop(['链接'], axis=1)
#字段修正,方便统计
base_data['天数']= base_data['天数'].apply(lambda x :re.sub("\D", "", x) )
base_data['照片数']= base_data['照片数'].apply(lambda x :re.sub("\D", "", x) )
base_data['费用']= base_data['费用'].apply(lambda x :re.sub("\D", "", str(x) ))
base_data['费用'] = base_data['费用'].apply(lambda x : eval(x) if len(x)>0 else 0 )
base_data['date']= base_data['出发日期'].apply(lambda x :x.split( )[0] )
base_data['date_year']= base_data['出发日期'].apply(lambda x :x.split( )[0][:4])
base_data['阅读数']= base_data['阅读数'].apply(lambda x : int(re.sub("\D", "", str(x)))*10000 if str(x).find('万') else x)
数据分析、可视化
1.费用问题

外出旅行,首先要考虑的肯定的费用问题。因疫情原因,在费用的数据分析统计中,我们剔除了2020年的数据,考虑了2017年、2018年、2019年的数据。
在这里插入图片描述
上图展示了近三年主要热门目的地人均消费情况,包含国内、国外热门地区。根据数据统计,国外人均平均消费为9461元,国内为3313元,游客在国外消费是国内消费的2.85倍。国内人均消费的排名前四名:丽江、三亚、香港、上海。在国外消费前四名:马尔代夫、法国、美国、日本。为什么游客在马尔代夫的人均消费比上海人均消费高达6倍的差距呢?

1)游客人群

马尔代夫游客人群分布
在这里插入图片描述
上海游客人群分布
在这里插入图片描述
马尔代夫,一个名字听起来就让人浮想联翩的地方,被称作上帝抛洒在人间的项链,人间最后的乐园,吸引了很多人去度假休闲,其中情侣占比高达54.8%,再加上机酒消费,这也成为马尔代夫消费高的一个重要原因,上海游客人群比较分散,其中情侣占比15%左右,一人旅行、三五好友占比相对较高。

2)逗留时长

上海游客逗留时长
在这里插入图片描述
马尔代夫游客逗留时长
在这里插入图片描述
判断一个城市对游客对心引力,游客逗留时间是最核心指标。从上图我们可以看到马尔代夫的逗留时间占比中4-7天、8-10天合计占比高达80%以上。上海逗留时间在1-3天占比为52.45%,4-7天、8-10天合计占比约为41%,这样是马尔代夫人均消费高的一个重要因素。

2.玩法攻略

什么样的旅行方式是游客最喜欢的呢?我相信仁者见仁,智者见智。我们看看游客外出最喜欢的玩法排行榜
在这里插入图片描述
从上图中我们可以看到,美食、购物+美食、短途周末、海滨海岛、自驾等玩法是大家的最爱,探险、环游、骑行等也收到不少人的喜爱,你喜欢什么样的玩法呢?

打卡景点

去一个地方去旅行,有些景点必须要去的,对于一个陌生的城市,怎么样可以快速确定打卡景点呢?小编选择了上海、成都、武汉,看看这些是否有遗漏的打卡景点呢。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.最赞路线

想去的打卡景点都有了,我们要有一个最完美的路线,小编在下面梳理一下网友点赞最高的路线,你是否满意呢?下面进行图片展示。
在这里插入图片描述

技术交流

欢迎转载、收藏本文,码字不易,有所收获点赞支持一下!

为方便进行学习交流,本号开通了技术交流群,添加方式如下:

直接添加小助手微信号:pythoner666,备注:CSDN+python,或者按照如下方式添加均可!
在这里插入图片描述

这篇关于干货|Python爬取《去哪儿》攻略库,制作一份详细的旅行攻略,疫情后来一场说走就走的旅行!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/325778

相关文章

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过