python从date目录导入数据集_Python:PyTorch 使用 Torchvision 加载数据集 (八十一)

本文主要是介绍python从date目录导入数据集_Python:PyTorch 使用 Torchvision 加载数据集 (八十一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

加载图像数据

到目前为止,我们使用的数据都是人工数据集,你很少会在实际项目中用到这样的数据集。相反,在实际项目中,你可能会处理一些全尺寸的图像,比如手机相机拍摄的图片。在这个 notebook 中,我们将会学习如何加载图像,并使用它们来训练神经网络。

我们将用到来自 Kaggle 的猫狗照片数据集。下面是一些图片示例:

rZlgnSfTEz.png

我们将使用这个数据集来训练一个能够对猫狗图像进行分类的神经网络。如今看来,这似乎并不是什么伟大的成就,但在五年之前,这对计算机视觉系统来说极具挑战性。

%matplotlib inline

%config InlineBackend.figure_format = 'retina'

import matplotlib.pyplot as plt

import torch

from torchvision import datasets, transforms

import helper

加载图像数据最简单是方法是使用 torchvision 中的 datasets.ImageFolder(资料)。

dataset = datasets.ImageFolder('path/to/data', transform=transforms)

'path/to/data' 是通往数据目录的文件路径,transforms 是一个处理步骤的列表,使用 torchvision 中的 transforms 模块构建。ImageFolder 中的文件和目录应按以下格式构建:

root/dog/xxx.png

root/dog/xxy.png

root/dog/xxz.png

root/cat/123.png

root/cat/nsdf3.png

root/cat/asd932_.png

每个类都有各自存储图像的目录(cat 和 dog)。接着,这些图像将被贴上摘自目录名的标签。所以在这里,图像 123.png 在加载时将被贴上类标签 cat。你可以从这里直接下载我们早已构建好的数据集。我已经将它分成了训练集和测试集。

转换

当你使用 ImageFolder 加载数据后,你需要定义一些转换。举个例子,这些图像的尺寸都不相同,但我们需要统一尺寸以便进行训练。你可以使用 transforms.Resize() 来重新确定图像尺寸,也可以使用 transforms.CenterCrop()、transforms.RandomResizedCrop() 等进行切割。我们还需要使用 transforms.ToTensor() 来将图像转换为 PyTorch 张量。通常,你会使用 transforms.Compose() 来将这些转换结合到一条流水线中,这条流水线接收包含转换的列表,并按顺序运行。如下面的例子所示,它首先进行缩放,接着切割,再转换为张量:

transforms = transforms.Compose([transforms.Resize(255),

transforms.CenterCrop(224),

transforms.ToTensor()])

我们可以使用许多种转换,接下来我会逐步讲解,你也可以查看这里的资料。

Data Loader

在加载 ImageFolder 后,你需要将它传递给一个 DataLoader。DataLoader 接收数据集(比如你从 ImageFolder 中获取的数据集),并返回不同批次的图像以及对应的标签。你可以设置不同参数

这篇关于python从date目录导入数据集_Python:PyTorch 使用 Torchvision 加载数据集 (八十一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/324444

相关文章

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤