本文主要是介绍1301:大盗阿福(史上最全题解,没有之一,3种解法各大优化齐上阵),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目描述】
阿福是一名经验丰富的大盗。趁着月黑风高,阿福打算今晚洗劫一条街上的店铺。
这条街上一共有 NN 家店铺,每家店中都有一些现金。阿福事先调查得知,只有当他同时洗劫了两家相邻的店铺时,街上的报警系统才会启动,然后警察就会蜂拥而至。
作为一向谨慎作案的大盗,阿福不愿意冒着被警察追捕的风险行窃。他想知道,在不惊动警察的情况下,他今晚最多可以得到多少现金?
【输入】
输入的第一行是一个整数T(T≤50)T(T≤50) ,表示一共有T组数据。
接下来的每组数据,第一行是一个整数N(1≤N≤100,000)N(1≤N≤100,000) ,表示一共有NN家店铺。第二行是NN个被空格分开的正整数,表示每一家店铺中的现金数量。每家店铺中的现金数量均不超过10001000。
【输出】
对于每组数据,输出一行。该行包含一个整数,表示阿福在不惊动警察的情况下可以得到的现金数量。
【输入样例】
2
3
1 8 2
4
10 7 6 14
【输出样例】
8
24
【提示】
对于第一组样例,阿福选择第22家店铺行窃,获得的现金数量为88。
对于第二组样例,阿福选择第11和44家店铺行窃,获得的现金数量为10+14=2410+14=24。
一,朴素解法
打家劫舍是dp解决的经典问题,动规五部曲分析如下:
- 确定dp数组(dp table)以及下标的含义 :dp[i][0/1]表示从1~i的店铺中洗劫店铺,不洗劫/洗劫第i个店铺,获得的最大价值。
- 确定递推公式:如果偷第i家店铺,那么第i-1家店铺是不能偷,而i-2后(包括i-2)是可以偷的,并且还会获得第i家店铺的¥。所以dp[i][1] = a[i] + dp[i - 1][0]; 那dp[i][0]呢?我们回想一下定义,如果不偷第i家店铺,那么第i-1家店铺可偷可不偷,所以要取最大值。也就是dp[i][0] = max(dp[i - 1][0],dp[i - 1][1]);
- dp数组如何初始化:因为递推公式中用到了dp[i-1][0]和dp[i-1][1],所以它们都是要初始化的。根据定义可知初始化为dp[1][1] = a[1]; dp[1][0] = 0;
- 确定遍历顺序 dp[i][0/1] 是根据dp[i - 1][0/1] 推导出来的,那么一定是从前到后遍历!
- 举例推导dp数组 这一步我就省略了
那么代码如下:
#include <bits/stdc++.h>
using namespace std;
int n,a[100007],dp[100007][2],t;
int main()
{cin>>t;while(t--){memset(a,0,sizeof(a));memset(dp,0,sizeof(dp));cin>>n;for(int i = 1; i <= n; i++) cin>>a[i];dp[1][1] = a[1];dp[1][0] = 0;for(int i = 2; i <= n; i++){dp[i][0] = max(dp[i - 1][0],dp[i - 1][1]);dp[i][1] = a[i] + dp[i - 1][0];}cout<<max(dp[n][0],dp[n][1])<<endl;}return 0;
}
二,优化写法
这道题也可以由一维数组来写。
- 确定dp数组(dp table)以及下标的含义:dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。
- 确定递推公式:决定dp[i]的因素就是第i房间偷还是不偷。如果偷第i房间,那么dp[i] = dp[i - 2] + a[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。如果不偷第i房间,dp[i]=max(dp[i-2],dp[i - 3] + a[i - 1]);,不过在这里因为我们最后是要取最大值的,而dp[i-2]一定是小于等于前面的dp[i-2]+a[i]的,所可以把它省略,最后就变成了dp[i - 3] + a[i - 1]。然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + a[i], dp[i - 3] + a[i - 1]);
- dp数组如何初始化:根据定义可知 dp[1] = a[1]; dp[2] = max(a[1],a[2]);
- 确定遍历顺序:dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历!
- 举例推导dp数组:以输入[2,7,9,3,1]为例。
红框dp[n]为结果。
代码如下:
#include <bits/stdc++.h>
using namespace std;
int n,a[100007],dp[100007],t;
int main()
{cin>>t;while(t--){memset(a,0,sizeof(a));memset(dp,0,sizeof(dp));cin>>n;for(int i = 1; i <= n; i++) cin>>a[i];dp[1] = a[1];dp[2] = max(a[1],a[2]);dp[3] = max(a[1] + a[3],a[2]);for(int i = 4; i <= n; i++) dp[i] = max((dp[i - 2] + a[i]),(dp[i - 3] + a[i - 1]));cout<<dp[n]<<endl;}return 0;
}
三,滚动数组优化
直接上代码,详见 动态规划之滚动数组_shaw chakong的博客-CSDN博客_动态规划滚动数组
#include <bits/stdc++.h>
using namespace std;
int n,a[100007],dp[5],t;
int main()
{cin>>t;while(t--){memset(a,0,sizeof(a));memset(dp,0,sizeof(dp));cin>>n;for(int i = 1; i <= n; i++) cin>>a[i];dp[1] = a[1];dp[2] = max(a[1],a[2]);for(int i = 3; i <= n; i++) dp[i % 4] = max((dp[(i - 2) % 4] + a[i]),(dp[(i - 1) % 4]));cout<<dp[n % 4]<<endl;}return 0;
}
这篇关于1301:大盗阿福(史上最全题解,没有之一,3种解法各大优化齐上阵)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!