安全多方计算框架最全合集(持续更新)

2023-11-01 12:20

本文主要是介绍安全多方计算框架最全合集(持续更新),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

安全多方计算框架

本文对现有安全多方计算/学习框架进行了全面、系统的梳理。

  1. 目前大部分安全多方计算框架主要基于秘密共享、同态加密、混淆电路以及相关基本模块的组合。
  2. 通常使用定制的协议来支持特定数量的参与方(一般为两方或三方),导致可扩展性较差。
  3. 大多数只能支持诚实大多数/不诚实大多数的半诚实安全模型,以及诚实大多数的恶意安全模型。恶意安全模型只有基于SPDZ协议的安全多方学习框架才可以支持。
  4. 大部分支持安全训练功能的框架能够高效运行的模型较为简单,如线性回归、逻辑回归和网构较为简单的神经网络。对ResNet等较复杂的模型支持较少或效率较低。

1. ABY

ABY框架由德国达姆施塔特工业大学(Technische Universita ̈t Darmstadt)的 Engineering Cryptographic Protocols Group于2015年在论文《ABY – A Framework for Efficient Mixed-Protocol Secure Two-Party Computation》中提出。

该框架仅实现具有半诚实安全性的两方计算,支持三种秘密共享类型(算术共享、布尔共享、姚式共享)之间的安全转换,其中,算术共享采用Beaver乘法三元组,布尔共享采用GMW(Goldreich-Micali-Wigderson)协议,姚式共享采用混淆电路协议。

在这里插入图片描述

源代码:
https://github.com/encryptogroup/ABY

2. ABY3

ABY3 由Payman Mohassel and Peter Rindal于2018年在论文《ABY3: A Mixed Protocol Framework for Machine Learning》中提出。

该框架设计了一个通用的基于三方服务器的隐私保护机器学习框架,基于此实现了新的线性回归、逻辑回归、神经网络模型;提出了新的完整的算术电路、布尔电路和Yao电路之间的转化协议;提出了新的三方秘密分享下的定点十进制小数乘法、并设计了计算分断线性多项式函数的协议;该框架仅以半诚实安全性来实现三方计算

源代码:
https://github.com/ladnir/aby3

3. CBMC-GC

CBMC-GC由Martin Franz1, Andreas Holzer于2014年在论文《CBMC-GC: An ANSI C Compiler for Secure Two-Party Computations》中提出。

该框架是一个能将符合ANSI-C标准的程序转换成布尔电路的电路编译器,还包括一个以其他格式输出电路的工具circuit-utils,这个工具对于仅支持部分电路格式的文件框架至关重要,比如EMP-toolkit。

源代码:
https://github.com/MPC-SoK/frameworks/tree/master/cbmc-gc

4. Cheetah

Cheetah是阿里安全双子座实验室于2022年在USENIX Security’22的发布的论文《Cheetah: Lean and Fast Secure Two-Party Deep Neural Network Inference》提出的框架。

该框架通过仔细设计DNN,基于格的同态加密、VOLE类型的不经意传输和秘密共享, 提出了2PC-NN推理的系统Cheetah, 比CCS’20的CrypTFlow2开销小的多, 计算效率更快, 通信效率更高。

源代码:
https://github.com/Alibaba-Gemini-Lab/OpenCheetah

5. CrypTFlow2

CrypTFlow2是微软Deevashwer Rathee等人在CCS’2020的发表论文《CrypTFlow2: Practical 2-Party Secure Inference》提出的框架。

该框架基于茫然传输(Oblivious Transfer, OT)提出了安全比较的一种新的协议,并对该协议进行了深度优化。然后,利用该比较协议设计了面向神经网络的多个算子协议,例如ReLU、Truncation、faithful Division (divisor is public), Avgpool、和Maxpool等。

源代码:
https://github.com/mpc-msri/EzPC

6. EMP-toolkit

EMP-toolkit由XiaoWang,AlexJ.Malozemoff,andJonathanKatz在2016年提出,实现了零知识证明、OT、混淆电路等安全多方计算基本模块,实现语言包括Python、C++等。

源代码:
https://github.com/emp-toolkit

7. FRESCO

FRESCO由Alexandra Institute于2020年提出,该框架是一个高效的安全计算框架,提供了许多常用的安全功能的标准库,以便快速实现新的复杂功能,在应用程序中使用。FRESCO支持并行化和预处理等技术,使其能够扩展到大型计算。

FRESCO框架只实现了不诚实多数计算,对算术电路(SPDZ和SPDZ2k )具有恶意安全,对二进制电路具有半诚实安全。

源代码:
https://github.com/aicis/fresco

8. Frigate

Frigate是一个编译器,它将类似C语言的代码编译成二进制的电路描述,由Benjamin Mood, Debayan Gupta, Henry Carter等人于2016年在论文《Frigate: A Validated, Extensible, and Efficient Compiler and Interpreter for Secure Computation》中提出。

9. JIFF

JIFF由Multiparty.org Development Team于2020年发布,是一个用于构建依赖安全多方计算的应用程序的JavaScript库。JIFF高度灵活,专注于可用性,能够在浏览器、手机或Node.js中运行。JIFF的设计使得开发人员不需要熟悉MPC技术或知道密码协议的细节,就可以构建安全的应用程序。

源代码:
https://github.com/multiparty/jiff

10. MP-SPDZ

MP-SPDZ由澳大利亚的研究机构CSIRO’s Data61于2020年在论文《MP-SPDZ: A Versatile Framework for Multi-Party Computation》中提出。

MP-SPDZ 作为SPDZ-2(Keller等人,CCS’13)的分支,是多方计算MPC协议SPDZ(Damgård等人,Crypto’12)的实现。MP-SPDZ将SPDZ-2扩展到了二十多种MPC协议,

该框架作为SPDZ-2的分支,是多方计算协议SPDZ的实现。MP-SPDZ将SPDZ-2扩展到了二十多种MPC协议,涵盖了常用的安全模型(诚实/不诚实的多数人和半诚实/恶意模型),以及二进制和算术电路的计算(后者的模数为素数和二次幂),所采用的基本模块包括秘密共享、不经意传输、同态加密和混淆电路。主体语言是Python,定义了很多新的关于MPC的类和库,可基于Python的高级编程接口来使用相关协议。

11. MPC-ECDSA

2023年,Safeheron公司开源了基于 C++ 的 MPC 门限签名协议库,主要包括GG18、GG20、MPC-CMP3 种具有代表性的 MPC-ECDSA 协议。

源代码:
https://github.com/Safeheron/multi-party-ecdsa-cpp

12. MPyC

MPyC由Berry Schoenmakers于2020年发布,是一个用于MPC的开源Python包,实现了基于Shamir的秘密共享的半诚实安全的计算。

源代码:
https://github.com/lschoe/mpyc

13. Obliv-C

Obliv-C由Samee Zahur, Mike Rosulek, David Evans于2015年在论文《Obliv-C: A Language for Extensible Data-Oblivious Computation》中提出。

Obliv-C是一个简单的GCC包装器,可以很容易地在常规C程序中嵌入安全计算协议。

源代码:
https://github.com/samee/obliv-c

14. OblivVM

OblivVM由Chang Liu, Xiao Shaun Wang, Kartik Nayak等人于2015年在论文《ObliVM: A Programming Framework for Secure Computation》中提出。

ObliVM提供了一种领域专用语言,将Java的扩展编译成Java字节码,支持Yao的混淆电路,具有半诚实的安全性。

源代码:
https://github.com/oblivm/ObliVMLang

15. PICCO

PICCO由Yihua Zhang, Aaron Steele, and Marina Blanton于2013年在论文《PICCO: A General-Purpose Compiler for Private Distributed Computation》中提出。

该框架将C语言扩展编写的程序编译成本地二进制文件,并在分布式环境中运行它,实现了基于Shamir的秘密共享的诚实多数半诚实计算。

源代码:
https://github.com/applied-crypto-lab/picco

16. Private Join and Compute

谷歌公司于2019年推出了Private Join and Compute隐私计算开源框架。该框架Private Join和Compute结合了隐私集合交集、同态加密两种基本的加密技术来保护数据。

源代码:
https://github.com/Google/private-join-and-compute 。

17. SCALE-MAMBA

SCALE-MAMBA框架由KU Leuven COSIC于2019年提出。该框架是SPDZ-2的另一个分叉,尽管有共同的根源,但自2018年以来,这两个分叉已经有了很大的分歧。SCALE-MAMBA只实现了素数模数(不是二的幂数)的算术计算,根据Hazay等人的混淆电路,以及基于秘密共享的二进制计算。所有的计算都只在恶意安全的情况下实现,不诚实多数计算模数化只使用同态加密实现。另一方面,SCALE-MAMBA对理论上可能的任何访问结构都实现了诚实多数计算。前端与MP-SPDZ中的类似,但没有后期增加的动态循环优化、重复代码优化和机器学习功能。此外,作者已经开始脱离Python编译器,转而使用基于Rust的新编译器。

源代码:
https://github.com/KULeuven-COSIC/SCALE-MAMBA

18. Sequre

Sequre由Haris Smajlović, Ariya Shajii, Bonnie Berger等人于2023年在论文《Sequre: a high-performance framework
for secure multiparty computation enables biomedical data sharing》提出。

该框架是一个易于使用的高性能MPC应用开发框架,提供了一套自动编译时优化,可以显著提高MPC应用程序的性能,主体语言是Python,目前已应用与在各种生物信息学任务上,包括全基因组关联研究、药物-靶标相互作用推断等,速度比现有流程提高了3-4倍,代码库大小减少了7倍。

源代码:https://github.com/0xTCG/sequre

19. Sharemind MPC

Sharemind MPC由 于200年在论文《Sharemind: A Framework for Fast Privacy-Preserving Computations》中提出。

该框架实现了各种后端的前台,但它自己的后端只使用三方诚信多数半诚信计算。它还允许使用ABY和FRESCO作为后端,而专有的后端不能自由使用。

源代码:
https://github.com/sharemind-sdk

20. Squirrel

Squirrel是摩根大通及其附属公司(“JP摩根”)的人工智能研究小组和AlgoCRYPT CoE小组于2023年在论文《Squirrel: A Scalable Secure Two-Party Computation Framework for Training Gradient Boosting Decision Tree》提出的框架。

该框架可在纵向切分的数据集上进行安全的两方GBDT训练的框架,其中两个数据所有者各自持有相同数据样本的不同特征,在训练过程中不会泄露任何敏感的中间信息。

21. TinyGarble

TinyGarble由Ebrahim M. Songhori, Siam U. Hussain等人于2015年在论文《TinyGarble: Highly Compressed and Scalable Sequential Garbled Circuits》中提出。

该框架实现了Yao的半诚实安全的混淆乱码电路。TinyGarble可以将1024位乘法所需的内存占用压缩为4,172倍,同时将非XOR门的数量减少67%。

源代码:
https://github.com/esonghori/TinyGarble

22. Wysteria

Wysteria由Aseem Rastogi、Matthew A. Hammer等人于2014年在论文《WYSTERIA: A Programming Language for Generic, Mixed-Mode Multiparty Computations》中提出。

该框架实现了一个特定领域的语言,在半诚实环境下,只有二进制计算。

源代码:
https://github.com/voidshard/wysteria

这篇关于安全多方计算框架最全合集(持续更新)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322945

相关文章

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Linux Mint Xia 22.1重磅发布: 重要更新一览

《LinuxMintXia22.1重磅发布:重要更新一览》Beta版LinuxMint“Xia”22.1发布,新版本基于Ubuntu24.04,内核版本为Linux6.8,这... linux Mint 22.1「Xia」正式发布啦!这次更新带来了诸多优化和改进,进一步巩固了 Mint 在 Linux 桌面

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

Ubuntu 24.04 LTS怎么关闭 Ubuntu Pro 更新提示弹窗?

《Ubuntu24.04LTS怎么关闭UbuntuPro更新提示弹窗?》Ubuntu每次开机都会弹窗提示安全更新,设置里最多只能取消自动下载,自动更新,但无法做到直接让自动更新的弹窗不出现,... 如果你正在使用 Ubuntu 24.04 LTS,可能会注意到——在使用「软件更新器」或运行 APT 命令时,

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

hdu1689(线段树成段更新)

两种操作:1、set区间[a,b]上数字为v;2、查询[ 1 , n ]上的sum 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdl