安全多方计算框架最全合集(持续更新)

2023-11-01 12:20

本文主要是介绍安全多方计算框架最全合集(持续更新),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

安全多方计算框架

本文对现有安全多方计算/学习框架进行了全面、系统的梳理。

  1. 目前大部分安全多方计算框架主要基于秘密共享、同态加密、混淆电路以及相关基本模块的组合。
  2. 通常使用定制的协议来支持特定数量的参与方(一般为两方或三方),导致可扩展性较差。
  3. 大多数只能支持诚实大多数/不诚实大多数的半诚实安全模型,以及诚实大多数的恶意安全模型。恶意安全模型只有基于SPDZ协议的安全多方学习框架才可以支持。
  4. 大部分支持安全训练功能的框架能够高效运行的模型较为简单,如线性回归、逻辑回归和网构较为简单的神经网络。对ResNet等较复杂的模型支持较少或效率较低。

1. ABY

ABY框架由德国达姆施塔特工业大学(Technische Universita ̈t Darmstadt)的 Engineering Cryptographic Protocols Group于2015年在论文《ABY – A Framework for Efficient Mixed-Protocol Secure Two-Party Computation》中提出。

该框架仅实现具有半诚实安全性的两方计算,支持三种秘密共享类型(算术共享、布尔共享、姚式共享)之间的安全转换,其中,算术共享采用Beaver乘法三元组,布尔共享采用GMW(Goldreich-Micali-Wigderson)协议,姚式共享采用混淆电路协议。

在这里插入图片描述

源代码:
https://github.com/encryptogroup/ABY

2. ABY3

ABY3 由Payman Mohassel and Peter Rindal于2018年在论文《ABY3: A Mixed Protocol Framework for Machine Learning》中提出。

该框架设计了一个通用的基于三方服务器的隐私保护机器学习框架,基于此实现了新的线性回归、逻辑回归、神经网络模型;提出了新的完整的算术电路、布尔电路和Yao电路之间的转化协议;提出了新的三方秘密分享下的定点十进制小数乘法、并设计了计算分断线性多项式函数的协议;该框架仅以半诚实安全性来实现三方计算

源代码:
https://github.com/ladnir/aby3

3. CBMC-GC

CBMC-GC由Martin Franz1, Andreas Holzer于2014年在论文《CBMC-GC: An ANSI C Compiler for Secure Two-Party Computations》中提出。

该框架是一个能将符合ANSI-C标准的程序转换成布尔电路的电路编译器,还包括一个以其他格式输出电路的工具circuit-utils,这个工具对于仅支持部分电路格式的文件框架至关重要,比如EMP-toolkit。

源代码:
https://github.com/MPC-SoK/frameworks/tree/master/cbmc-gc

4. Cheetah

Cheetah是阿里安全双子座实验室于2022年在USENIX Security’22的发布的论文《Cheetah: Lean and Fast Secure Two-Party Deep Neural Network Inference》提出的框架。

该框架通过仔细设计DNN,基于格的同态加密、VOLE类型的不经意传输和秘密共享, 提出了2PC-NN推理的系统Cheetah, 比CCS’20的CrypTFlow2开销小的多, 计算效率更快, 通信效率更高。

源代码:
https://github.com/Alibaba-Gemini-Lab/OpenCheetah

5. CrypTFlow2

CrypTFlow2是微软Deevashwer Rathee等人在CCS’2020的发表论文《CrypTFlow2: Practical 2-Party Secure Inference》提出的框架。

该框架基于茫然传输(Oblivious Transfer, OT)提出了安全比较的一种新的协议,并对该协议进行了深度优化。然后,利用该比较协议设计了面向神经网络的多个算子协议,例如ReLU、Truncation、faithful Division (divisor is public), Avgpool、和Maxpool等。

源代码:
https://github.com/mpc-msri/EzPC

6. EMP-toolkit

EMP-toolkit由XiaoWang,AlexJ.Malozemoff,andJonathanKatz在2016年提出,实现了零知识证明、OT、混淆电路等安全多方计算基本模块,实现语言包括Python、C++等。

源代码:
https://github.com/emp-toolkit

7. FRESCO

FRESCO由Alexandra Institute于2020年提出,该框架是一个高效的安全计算框架,提供了许多常用的安全功能的标准库,以便快速实现新的复杂功能,在应用程序中使用。FRESCO支持并行化和预处理等技术,使其能够扩展到大型计算。

FRESCO框架只实现了不诚实多数计算,对算术电路(SPDZ和SPDZ2k )具有恶意安全,对二进制电路具有半诚实安全。

源代码:
https://github.com/aicis/fresco

8. Frigate

Frigate是一个编译器,它将类似C语言的代码编译成二进制的电路描述,由Benjamin Mood, Debayan Gupta, Henry Carter等人于2016年在论文《Frigate: A Validated, Extensible, and Efficient Compiler and Interpreter for Secure Computation》中提出。

9. JIFF

JIFF由Multiparty.org Development Team于2020年发布,是一个用于构建依赖安全多方计算的应用程序的JavaScript库。JIFF高度灵活,专注于可用性,能够在浏览器、手机或Node.js中运行。JIFF的设计使得开发人员不需要熟悉MPC技术或知道密码协议的细节,就可以构建安全的应用程序。

源代码:
https://github.com/multiparty/jiff

10. MP-SPDZ

MP-SPDZ由澳大利亚的研究机构CSIRO’s Data61于2020年在论文《MP-SPDZ: A Versatile Framework for Multi-Party Computation》中提出。

MP-SPDZ 作为SPDZ-2(Keller等人,CCS’13)的分支,是多方计算MPC协议SPDZ(Damgård等人,Crypto’12)的实现。MP-SPDZ将SPDZ-2扩展到了二十多种MPC协议,

该框架作为SPDZ-2的分支,是多方计算协议SPDZ的实现。MP-SPDZ将SPDZ-2扩展到了二十多种MPC协议,涵盖了常用的安全模型(诚实/不诚实的多数人和半诚实/恶意模型),以及二进制和算术电路的计算(后者的模数为素数和二次幂),所采用的基本模块包括秘密共享、不经意传输、同态加密和混淆电路。主体语言是Python,定义了很多新的关于MPC的类和库,可基于Python的高级编程接口来使用相关协议。

11. MPC-ECDSA

2023年,Safeheron公司开源了基于 C++ 的 MPC 门限签名协议库,主要包括GG18、GG20、MPC-CMP3 种具有代表性的 MPC-ECDSA 协议。

源代码:
https://github.com/Safeheron/multi-party-ecdsa-cpp

12. MPyC

MPyC由Berry Schoenmakers于2020年发布,是一个用于MPC的开源Python包,实现了基于Shamir的秘密共享的半诚实安全的计算。

源代码:
https://github.com/lschoe/mpyc

13. Obliv-C

Obliv-C由Samee Zahur, Mike Rosulek, David Evans于2015年在论文《Obliv-C: A Language for Extensible Data-Oblivious Computation》中提出。

Obliv-C是一个简单的GCC包装器,可以很容易地在常规C程序中嵌入安全计算协议。

源代码:
https://github.com/samee/obliv-c

14. OblivVM

OblivVM由Chang Liu, Xiao Shaun Wang, Kartik Nayak等人于2015年在论文《ObliVM: A Programming Framework for Secure Computation》中提出。

ObliVM提供了一种领域专用语言,将Java的扩展编译成Java字节码,支持Yao的混淆电路,具有半诚实的安全性。

源代码:
https://github.com/oblivm/ObliVMLang

15. PICCO

PICCO由Yihua Zhang, Aaron Steele, and Marina Blanton于2013年在论文《PICCO: A General-Purpose Compiler for Private Distributed Computation》中提出。

该框架将C语言扩展编写的程序编译成本地二进制文件,并在分布式环境中运行它,实现了基于Shamir的秘密共享的诚实多数半诚实计算。

源代码:
https://github.com/applied-crypto-lab/picco

16. Private Join and Compute

谷歌公司于2019年推出了Private Join and Compute隐私计算开源框架。该框架Private Join和Compute结合了隐私集合交集、同态加密两种基本的加密技术来保护数据。

源代码:
https://github.com/Google/private-join-and-compute 。

17. SCALE-MAMBA

SCALE-MAMBA框架由KU Leuven COSIC于2019年提出。该框架是SPDZ-2的另一个分叉,尽管有共同的根源,但自2018年以来,这两个分叉已经有了很大的分歧。SCALE-MAMBA只实现了素数模数(不是二的幂数)的算术计算,根据Hazay等人的混淆电路,以及基于秘密共享的二进制计算。所有的计算都只在恶意安全的情况下实现,不诚实多数计算模数化只使用同态加密实现。另一方面,SCALE-MAMBA对理论上可能的任何访问结构都实现了诚实多数计算。前端与MP-SPDZ中的类似,但没有后期增加的动态循环优化、重复代码优化和机器学习功能。此外,作者已经开始脱离Python编译器,转而使用基于Rust的新编译器。

源代码:
https://github.com/KULeuven-COSIC/SCALE-MAMBA

18. Sequre

Sequre由Haris Smajlović, Ariya Shajii, Bonnie Berger等人于2023年在论文《Sequre: a high-performance framework
for secure multiparty computation enables biomedical data sharing》提出。

该框架是一个易于使用的高性能MPC应用开发框架,提供了一套自动编译时优化,可以显著提高MPC应用程序的性能,主体语言是Python,目前已应用与在各种生物信息学任务上,包括全基因组关联研究、药物-靶标相互作用推断等,速度比现有流程提高了3-4倍,代码库大小减少了7倍。

源代码:https://github.com/0xTCG/sequre

19. Sharemind MPC

Sharemind MPC由 于200年在论文《Sharemind: A Framework for Fast Privacy-Preserving Computations》中提出。

该框架实现了各种后端的前台,但它自己的后端只使用三方诚信多数半诚信计算。它还允许使用ABY和FRESCO作为后端,而专有的后端不能自由使用。

源代码:
https://github.com/sharemind-sdk

20. Squirrel

Squirrel是摩根大通及其附属公司(“JP摩根”)的人工智能研究小组和AlgoCRYPT CoE小组于2023年在论文《Squirrel: A Scalable Secure Two-Party Computation Framework for Training Gradient Boosting Decision Tree》提出的框架。

该框架可在纵向切分的数据集上进行安全的两方GBDT训练的框架,其中两个数据所有者各自持有相同数据样本的不同特征,在训练过程中不会泄露任何敏感的中间信息。

21. TinyGarble

TinyGarble由Ebrahim M. Songhori, Siam U. Hussain等人于2015年在论文《TinyGarble: Highly Compressed and Scalable Sequential Garbled Circuits》中提出。

该框架实现了Yao的半诚实安全的混淆乱码电路。TinyGarble可以将1024位乘法所需的内存占用压缩为4,172倍,同时将非XOR门的数量减少67%。

源代码:
https://github.com/esonghori/TinyGarble

22. Wysteria

Wysteria由Aseem Rastogi、Matthew A. Hammer等人于2014年在论文《WYSTERIA: A Programming Language for Generic, Mixed-Mode Multiparty Computations》中提出。

该框架实现了一个特定领域的语言,在半诚实环境下,只有二进制计算。

源代码:
https://github.com/voidshard/wysteria

这篇关于安全多方计算框架最全合集(持续更新)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322945

相关文章

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

hdu1689(线段树成段更新)

两种操作:1、set区间[a,b]上数字为v;2、查询[ 1 , n ]上的sum 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdl

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

hdu 1754 I Hate It(线段树,单点更新,区间最值)

题意是求一个线段中的最大数。 线段树的模板题,试用了一下交大的模板。效率有点略低。 代码: #include <stdio.h>#include <string.h>#define TREE_SIZE (1 << (20))//const int TREE_SIZE = 200000 + 10;int max(int a, int b){return a > b ? a :

客户案例:安全海外中继助力知名家电企业化解海外通邮困境

1、客户背景 广东格兰仕集团有限公司(以下简称“格兰仕”),成立于1978年,是中国家电行业的领军企业之一。作为全球最大的微波炉生产基地,格兰仕拥有多项国际领先的家电制造技术,连续多年位列中国家电出口前列。格兰仕不仅注重业务的全球拓展,更重视业务流程的高效与顺畅,以确保在国际舞台上的竞争力。 2、需求痛点 随着格兰仕全球化战略的深入实施,其海外业务快速增长,电子邮件成为了关键的沟通工具。

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <