使用Python轻松获取Binance历史交易

2023-11-01 11:20

本文主要是介绍使用Python轻松获取Binance历史交易,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

鉴于某些策略需要一定水平的技术数据,而其他数据可能只需要花费一个小时的时间,该过程并不总是那么简单,而基础架构,可用性和连接性等元素可能会因数据类型的不同而大相径庭。

但是为什么本文仅涉及获取“交易”数据,为什么我们使用Binance API?你可能对我的文章内容有些疑问。

数据频率和平衡

我想说,交易数据端点主要在99.99%的交易所中提供。它是细粒度的,提供了足够的详细信息(在某些非常特殊的情况下)用于回测高频交易(HFT)策略,并且可以用作 OHLC candles(1S至24H或更多,如果你想要的话)的基础。

交易数据是通用的,并且允许使用不同频率的策略进行大量实验。

为什么选择Binance?

那只是因为它是我由于数量庞大而倾向于回溯的交易所之一。

我们将要进行的编码

我们将创建一个Python脚本,该脚本接收对符号,开始日期和结束日期作为命令行参数。它将包含所有交易的CSV文件输出到磁盘。该过程可以通过以下步骤进行详细说明:

1、解析symbol,starting_date和ending_date论据。

2、获取开始日期发生的第一笔交易,以获取第一笔交易trade_id。

3、循环获取每个请求1000笔交易(Binance API限制),直到ending_date达到为止。

4、最后,将数据保存到磁盘。对于示例,我们将其保存为CSV,但是你还有其他选择,不一定保存为CSV。

5、我们将使用pandas,requests,time,sys,和datetime。在代码段中,将不会显示错误验证,因为它不会为说明添加任何值。

编码时间

该脚本将使用以下参数:

1、symbol:交易对的符号,由Binance定义。可以在此处查询,也可以从Binance Web应用程序的URL复制(不包括 _ 字符)。

-starting_date and ending_date:不言自明。期望的格式为mm/dd/yyyy,或者使用Python lang语为%m/%d/%Y。

为了获取参数,我们将使用内置函数sys(这里没有什么花哨的地方),并且为了解析日期,我们将使用datetime库。

我们将添加一天并减去一微秒,以使ending_date时间部分始终处于23:59:59.999,这使得获取当天间隔更加实用。

提取交易

使用Binance的API并使用aggTrades端点,我们可以在一个请求中获得最多1000 笔交易,如果我们使用开始和结束参数,则它们之间的间隔最多为一小时。

在出现一些失败之后,通过使用时间间隔获取(在某个时间点或另一个时间点,流动性会变得疯狂,我会失去一些宝贵的交易),我决定尝试from_id策略。

将aggTrades选择的端点,因为它返回压缩行业。这样,我们将不会丢失任何宝贵的信息。

获得压缩的总交易。在同一时间从同一订单以相同价格执行的交易将汇总数量。

该from_id策略是这样的:

我们要得到的第一笔交易starting_date 通过发送日期的时间间隔向终点。之后,我们将从第一个获取的交易ID开始获取1000个交易。然后,我们将检查最后一笔交易是否发生在我们之后ending_date。

如果是这样,我们已经遍历了所有时间段,可以将结果保存到文件中。否则,我们将更新from_id变量以获取最后的交易ID,然后重新开始循环。

取得第一个交易编号

首先,我们创建一个new_end_date。那是因为我们aggTrades通过传递a startTime和endTime 参数来使用。

现在,我们只需要知道该期间的第一个交易编号,因此我们将增加60秒。在低流动性货币对中,可以更改此参数,因为不能保证在请求的第一天发生交易。

然后,使用我们的辅助函数解析日期,以使用该calendar.timegm函数将日期转换为Unix毫秒表示形式。该timegm函数是首选函数,因为它将日期保留为UTC。

请求的响应是按日期排序的贸易对象列表,格式如下:

因此,由于我们需要第一个交易ID ,因此我们将返回该response[0]["a"]值。

现在我们有了第一个交易ID,我们可以一次提取1000个交易,直到达到ending_date。以下代码将在我们的主循环中调用。它将使用from_id参数,放弃startDate和endDate参数,执行我们的请求。

现在,这是我们的主循环,它将执行请求并创建我们的DataFrame。

我们检查是否current_time包含最近获取的交易日期大于to_date,如果是,则我们:

  •  使用from_id参数获取交易
  •  使用从最新交易中获取的信息来更新from_id和current_time参数
  • 打印nice调试消息
  •  pd.concat 这些交易与我们之前的交易 DataFrame
  •  使用sleep让Binance不会给我们一个429 HTTP响应

清洁和保存

组装完之后DataFrame,我们需要执行简单的数据清理。我们将删除重复trim的交易和之后发生的交易to_date(我们有这个问题,因为我们要获取1000笔交易中的大部分,因此,我们有望在目标结束日期之后执行一些交易)。

我们可以封装我们的trim功能:

并执行我们的数据清理:

现在,我们可以使用以下to_csv方法将其保存到文件中:

我们还可以使用其他数据存储机制,例如Arctic。

最后:验证你的数据

在使用交易策略时,我们必须信任我们的数据,这一点很重要。通过应用以下验证,我们可以轻松地利用获取的交易数据来做到这一点:

在代码段中,我们将其转换DataFrame为NumPy数组,并逐行迭代,检查交易ID是否每行递增1。

Binance交易ID是以递增方式编号的,并且是为每个交易品种创建的,因此,很容易验证数据是否正确。

PS:创建成功的交易策略的第一步是拥有正确的数据。

这篇关于使用Python轻松获取Binance历史交易的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322606

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma