EfficientNet算法解析和实践

2023-10-31 20:38

本文主要是介绍EfficientNet算法解析和实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前的深度学习论文都是在某个设计维度上对网络结构进行研究,比如网络结构的操作层个数(深度)、输入图片的分辨率或者操作层的通道数(宽度),很少有论文同时对这三种维度上的组合搜索进行研究。EfficientNet研究的就是在相同FLOPS算力的限制下,探索网络深度、宽度和分辨率对相同操作类型网络的结果影响,找到最优的配置比例参数。

优化问题

本论文研究不是对网络中操作层的类型进行搜索,假定论文的基本卷积网络中的每个阶段的操作都是一样的,比如以ResNet为例,网络有5个stage,每个stage中每个层的卷积操作和残差块都是一样的。基本卷积网络的问题可以描述为:
在这里插入图片描述
在这个公式中, F i L i F_{i}^{L_i} FiLi表示的是stage i i i中重复 L i L_i Li次相同的操作 F i F_i Fi X ( H i , W i , C i ) X_{(H_i, W_i, C_i)} X(Hi,Wi,Ci)表示的是大小为 ( H i , W i , C i ) (H_i, W_i, C_i) (Hi,Wi,Ci)的输入特征向量 X X X
在一个标准的卷积神经网络中,网络结构的变化一般规律是:随着网络深度的增加,分辨率在每个stage减小一半,特征通道翻倍。EfficientNet的设计空间是每个stage的分辨率 ( H i , W i ) (H_i, W_i) (Hi,Wi)、通道数 C i C_i Ci和操作层数 L i L_i Li,为了减小搜索的设计空间,规定这三个维度的数值在stage上按照一定比例均匀变化。作者的目的是希望在给定资源限制的条件下,找到网络的深度、宽度和分辨率,最大限度地提高模型网络的分类准确率,优化问题可以表述为:
在这里插入图片描述
其中, d , w , r d, w, r d,w,r分别表示的网络的深度depth、通道宽度width和分辨率resolution。

组合缩放

作者在文章分别探索了改变网络的深度、通道宽度和分辨率的情况下,对于网络准确率和浮点计算量的影响。实验结果如下图所示。
在这里插入图片描述
上图中左中右分别代表的是在固定其他两个参数的条件下,分别提高宽度、深度和分辨率系数的条件下,在ImageNet上面的精度和计算量变化。从上图我们可以观察到,随着三种系数的增加,网络模型的计算量越来越大,但是准确率的增加几近停滞。
作者做了一些实验,探索了在不同深度和分辨率下,通道数变化对对于网络模型精度的影响,如下图所示。
在这里插入图片描述
可以看出,经过一些简单的比例调整(深度和宽度),在相同的FLOPS下,网络模型随着宽度的增加,获得比基准网络获得更大的精度收益。作者得出了这样一个结论:调整和平衡三个维度的系数,在相同计算量下,可以获得精度更高的网络模型。
论文中最后提出了一种叫做混合缩放的方法,引进了一个混合系数 ϕ \phi ϕ,统一了三种维度系数的变化,变化的方法为:
在这里插入图片描述
其中, α , β , γ \alpha, \beta, \gamma α,β,γ分别表示深度、宽度和分辨率三种维度的基本构成比例,这个比例的约束是 α ⋅ β 2 ⋅ γ 2 ≈ 2 \alpha \cdot \beta^2 \cdot \gamma^2 \approx 2 αβ2γ22,为什么宽度和分辨率的比例系数需要平方呢?因为计算量FLOPS的变化比例是和 β \beta β或者 γ \gamma γ的平方成正比的,这样子的话才能保证FLOPS随着 ϕ \phi ϕ的变化呈现 2 ϕ 2^\phi 2ϕ的比例变化。

网络架构

因为本文的搜索空间不包括操作层类型,所以一个好的基准网络baseline对于整体效果也是至关重要。作者综合分类准确率和计算量的综合指标,以MnasNet的基本模块MBConv为搜索空间,搜索出了一个基准网络(FLOPS<400M),叫做EfficientNet-B0,这个网络模型的结构为:
在这里插入图片描述
可惜的是,作者在论文中并没有给出是用什么方法搜索的。
在有了B0的网络之后,作者通过两步来调整EfficientNet中的网络系数:

  1. 固定 ϕ = 1 \phi=1 ϕ=1这个系数,采用网络搜索方法,基于公式(2)和(3),找到 α , β , γ \alpha, \beta, \gamma α,β,γ的最佳组合,搜索出来的结果是 α = 1.2 , β = 1.1 , γ = 1.15 \alpha=1.2, \beta=1.1, \gamma=1.15 α=1.2,β=1.1,γ=1.15
  2. 固定 α , β , γ \alpha, \beta, \gamma α,β,γ这三个系数,逐渐放大 ϕ \phi ϕ这个系数,获得B1 - B7的网络模型。

实验结果

论文在ImageNet数据集上做实验,得到了EfficientNet B0 - B7八个网络的结果,并和其他相同配置下的网络作对比。如下表格所示。
在这里插入图片描述
从表格中可以看出,在差不多精度的条件下,不同级别的EfficientNet和其他网络相比,具有更少的计算量的参数量,计算量一般能提升4倍以上,有些甚至达到了十几倍,参数量也都减小了3倍以上。部分网络用FLOPS-Accuracy二维图表示的话,优势更加直观,如下。
在这里插入图片描述

为了验证论文方法的可扩展性,还在MobileNet v1、MobileNet v2和ResNet-50的基准网络上做实验,得到如下结果:
在这里插入图片描述
在论文中,还对其他数据集和网络进行迁移实验,均获得比当前网络更好的水平,这里我就不一一列出了。
作者在EfficientNet的训练技巧上使用了Auto Augment、tensorflow版本的RMSProp优化器、Exponential Moving Average和dropout等trick,训练模型的代码已经公布在了Github里tensorflow/tpu的仓库上。

实践

2019年时,我在tensorflow上使用单机8卡GPU对B0网络进行训练,基本上复现了论文的结果,但是B3的复现效果却不理想,比论文给出的稍微低一些。另外,网络上也有其他人实现了PyTorch版本的EfficientNet网络模型结构,比较出名的有Timm库,我在PyTorch上利用该库的网络和训练方法,也将B0网络训练到77.38的准确率。
另外,虽然EfficientNet的参数量和计算量比其他网络少很多,但是这个网络里面大量使用了MBConv,这种模块需要分通道卷积,这种卷积方法比较消耗GPU显存,所以虽然计算量少了很多,但是在训练的时候batch size却无法设置过大。

这篇关于EfficientNet算法解析和实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/317971

相关文章

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加