【Python入门教程】基于OpenCV视频分解成图片+图片组合成视频(视频抽帧组帧)

本文主要是介绍【Python入门教程】基于OpenCV视频分解成图片+图片组合成视频(视频抽帧组帧),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在人工智能爆火的今天,深度学习被广泛应用于各个领域。深度学习的模型训练离不开大量的样本库。我之前分享过【Python爬虫】批量爬取网页的图片&制作数据集,今天跟大家分享一下如何使用OpenCV库对视频进行抽帧,从而增加样本图片的数量。正好也顺便分享一下如何再将图片组合成视频。当然视频的抽帧组帧还可以应用到很多邻域,我这里是用在制作样本的。

1 视频分解图片(拆帧)

1.1 主函数介绍+代码

        cv2.VideoCapture()是OpenCV库中的一个函数,用于读取视频文件或实时视频流。它返回一个视频捕获对象,可以通过这个对象进行视频的读取、操作和释放等操作。

        使用cv2.VideoCapture()可以读取视频文件或实时视频流中的每一帧图像。通过循环读取帧,可以获取视频中的所有帧。

        这里入参中的target_frame是指间隔多少帧保存一张图片,如果输入1,则全部保存。若视频帧率为60(每秒60张图片),你设置target_frame为120,则两秒保存一张图片。

def Frame_video(video_path, out_path, target_frame=1):""":param video_path: 需要拆帧的视频路径:param out_path: 拆帧后图片保存路径:param target_frame: 抽取帧数间隔,默认为1,即1帧保存1张图片:return: None"""print("-------------------------视频抽帧-------------------------")if not os.path.exists(out_path):# 判断文件夹是否存在os.makedirs(out_path)video = cv2.VideoCapture()  # 初始化一个OpenCV的视频读取对象video.open(video_path)count = 0  # 记录当前帧数image_index = 1000001  # 用于保存图片名称frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))  # 获取帧数print('视频共%s帧,抽取%s帧......' % (frames, int(frames/target_frame)))while True:_, frame = video.read()if frame is None:# print("第%s帧图片无法打开!" % count)breakif count % target_frame == 0:if int((image_index-1000000) / int(frames/target_frame) * 100) in [20, 40, 60, 80]:print("已提取百分之%s,剩余%s帧......" %(int((image_index-1000000) / int(frames/target_frame) * 100),int(frames / target_frame) - image_index + 1000000))save_path = out_path + "%s.png" % image_indexcv2.imwrite(save_path, frame)image_index += 1count += 1video.release()print("视频已全部抽帧完成......")print("-------------------------抽帧完成-------------------------")

1.2 完整代码

# -*- coding: utf-8 -*-
"""
@Time : 2023/10/25 14:26
@Auth : RS迷途小书童
@File :Video Frame Images.py
@IDE :PyCharm
@Purpose:视频拆帧成图片
"""
import os
import sys
import cv2def Frame_video(video_path, out_path, target_frame=1):""":param video_path: 需要拆帧的视频路径:param out_path: 拆帧后图片保存路径:param target_frame: 抽取帧数间隔,默认为1,即1帧保存1张图片:return: None"""print("-------------------------视频抽帧-------------------------")if not os.path.exists(out_path):# 判断文件夹是否存在os.makedirs(out_path)video = cv2.VideoCapture()  # 初始化一个OpenCV的视频读取对象video.open(video_path)count = 0  # 记录当前帧数image_index = 1000001  # 用于保存图片名称frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))  # 获取帧数print('视频共%s帧,抽取%s帧......' % (frames, int(frames/target_frame)))while True:_, frame = video.read()if frame is None:# print("第%s帧图片无法打开!" % count)breakif count % target_frame == 0:if int((image_index-1000000) / int(frames/target_frame) * 100) in [20, 40, 60, 80]:print("已提取百分之%s,剩余%s帧......" %(int((image_index-1000000) / int(frames/target_frame) * 100),int(frames / target_frame) - image_index + 1000000))save_path = out_path + "%s.png" % image_indexcv2.imwrite(save_path, frame)image_index += 1count += 1video.release()print("视频已全部抽帧完成......")print("-------------------------抽帧完成-------------------------")if __name__ == '__main__':print("\n-------------------------基础信息-------------------------")Video_path = r'G:\D.MP4'save_dir = r'B:\YOLO\18/'video1 = cv2.VideoCapture()  # 初始化一个OpenCV的视频读取对象if not video1.open(Video_path):print("无法打开视频,请检查数据!")sys.exit()fps = video1.get(cv2.CAP_PROP_FPS)  # 获取帧率frame_count = int(video1.get(cv2.CAP_PROP_FRAME_COUNT))  # 获取视频的总帧数video1.release()  # 清理缓存duration = frame_count / fps  # 计算视频的时长(秒)print("视频时长为: %ss" % int(duration))print("视频帧率为: %sFPS" % int(fps))print("视频帧数为: %s" % int(frame_count))Frame = int(input("请输入抽取帧数间隔:"))Frame_video(Video_path, save_dir, Frame)

2 图片组合视频(组帧)

2.1 主函数介绍+代码

        cv2.VideoWriter函数用于将录制的视频保存成文件。它需要指定文件路径、编码器、帧率和视频尺寸等参数。

def Image_Frame(images_path, out_path, fps):""":param images_path: 输入需要组帧的图片文件夹路径:param out_path: 输出视频路径:param fps: 视频帧率:return: None"""print("-------------------------图片组帧-------------------------")images_lists = os.listdir(images_path)  # images_lists.sort()image_size = Image.open(os.path.join(images_path, images_lists[0])).sizefourcc = cv2.VideoWriter_fourcc(*"mp4v")video_writer = cv2.VideoWriter(out_path, fourcc, fps, image_size)for image_list in images_lists:image_path = os.path.join(images_path, image_list)frame = cv2.imread(image_path)video_writer.write(frame)print("正在添加:", image_list)video_writer.release()print("-------------------------组帧完成-------------------------")

2.2 完整代码

# -*- coding: utf-8 -*-
"""
@Time : 2023/10/25 16:00
@Auth : RS迷途小书童
@File :Images Frame Video.py
@IDE :PyCharm
@Purpose:图片组帧成视频
"""
import os
import cv2
from PIL import Imagedef Image_Frame(images_path, out_path, fps):""":param images_path: 输入需要组帧的图片文件夹路径:param out_path: 输出视频路径:param fps: 视频帧率:return: None"""print("-------------------------图片组帧-------------------------")images_lists = os.listdir(images_path)  # images_lists.sort()image_size = Image.open(os.path.join(images_path, images_lists[0])).sizefourcc = cv2.VideoWriter_fourcc(*"mp4v")video_writer = cv2.VideoWriter(out_path, fourcc, fps, image_size)for image_list in images_lists:image_path = os.path.join(images_path, image_list)frame = cv2.imread(image_path)video_writer.write(frame)print("正在添加:", image_list)video_writer.release()print("-------------------------组帧完成-------------------------")if __name__ == "__main__":Image_path = r'G:\1/'Out_path = r'G:\1.mp4'FPS = int(input("请输入帧率:"))Image_Frame(Image_path, Out_path, FPS)

        本次博文就分享到这,如果大家有RS、GIS、Python方面的问题,欢迎大家留言交流。我们一起学习进步!

这篇关于【Python入门教程】基于OpenCV视频分解成图片+图片组合成视频(视频抽帧组帧)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/317132

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e