【续——Python三体问题】

2023-10-31 14:40
文章标签 python 三体问题

本文主要是介绍【续——Python三体问题】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

续——Python三体问题

    • 1. 周期稳态三体问题
    • 2. 作业题目
    • 3. 方法一(解析法)
      • 3.1 原理分析
      • 3.2 示例代码
        • 3.2.1 导入numpy、scipy、库
        • 3.2.2 计算天体的速度和加速度
        • 3.2.3 定义天体的基本参数
        • 3.2.4 选择integrate.ode求解器
        • 3.2.4 求解ODE
      • 3.3 matplotlib画图
        • 3.3.1 导入动画库并定义方程
        • 3.3.2 构造动画函数与帧函数:
        • 3.3.3 参数设置:
      • 3.4 bqplot画图
    • 4. 方法2(查表法)

1. 周期稳态三体问题


三体问题(Three-body problem)是天体力学中的基本力学模型。它是指三个质量、初始位置和初始速度都是任意的可视为质点的天体,在相互之间万有引力的作用下的运动规律问题。例如太阳系中,考虑太阳、地球和月球的运动,它们彼此以万有引力相吸引,若假设三个星球都可设为质点,并且忽略其他星球的引力,太阳、地球和月球的运动即可以视为三体问题。

现在已知,三体问题不能使用解析方法精确求解,即无法预测所有三体问题的数学情景,只有几种特殊情况已研究。对三体问题的数值解,会面临混沌系统的初值敏感问题。

2. 作业题目


修改下方示例代码的初始条件和求解器参数,计算一个平面三体运动的周期性稳定解,并作图展示。

参考资料

方法二采用数值解见https://numericaltank.sjtu.edu.cn/three-body/three-body.htm
论文:https://arxiv.org/pdf/1705.00527v2.pdf

3. 方法一(解析法)

小球受到的引力合力等于它所需要的向心力

3.1 原理分析

牛顿平面三体系统的运动由牛顿第二定律和引力定律控制

  1. 牛顿第二定律:
    F = m a F=ma F=ma
  2. 引力定律控制:
    F = G m 1 m 2 r 2 F=G{\frac {m_{1}m_{2}}{r^{2}}} F=Gr2m1m2
    当三个球体相等,并且围成平面等边三角形(边长为 l l l )的三个顶点,因此一个小球受到另外两个小球的引力,假设小球有一定的初始速度,提出了一种简单的平衡思路,如果小球受到的引力合力等于它所需要的向心力,则三个小球可保持平衡,围着等边三角形的外接圆做匀速圆周运动,永不停息(没有其他干扰)。

a. 初始状态
m 1 = m 2 = m 3 = m m_{1}=m_{2}=m_{3}=m m1=m2=m3=m
在这里插入图片描述

由平衡条件小球受到的引力合力等于它所需要的向心力,合力的加速度恰好等于向心加速度,对小球1分析:
G m l 2 ∗ 3 = v 2 r G{\frac {m}{l^{2}}}*{\sqrt{3}} ={\frac {v^{2}}{r}} Gl2m3 =rv2
r r r是小球到圆心的距离( r = l 3 r={\frac {l}{\sqrt{3}}} r=3 l)
化简:
v = G m l v = \sqrt{G{\frac {m}{l}}} v=Glm
此公式也是第一宇宙速度(逃离地球)

b. 最终效果
请添加图片描述

3.2 示例代码

3.2.1 导入numpy、scipy、库

import numpy as np
from scipy import integrate#导入积分求解函数
3.2.2 计算天体的速度和加速度

这里我们考虑天体运行中的三体问题。每一个天体在其他两个天体的万有引力作用下的运动方程都可以表示成3个二阶的ODE。一个天体有三个方向的速度和加速度,因此,一般三体问题的运动方程为18个一阶ODE方程组。'f’函数是随时间t计算合力和距离,并且三个天体的速度和加速度

#计算三个天体的速度和加速度
def f(t, y, args):G, m_A, m_B, m_C = argspos_A, pos_B, pos_C, vel_A, vel_B, vel_C = y[:3], y[3:6], y[6:9], y[9:12], y[12:15], y[15:]r_AB = np.sqrt(np.sum((pos_A-pos_B)**2))r_BC = np.sqrt(np.sum((pos_B-pos_C)**2))r_CA = np.sqrt(np.sum((pos_C-pos_A)**2))F_A = m_A * m_B * G*(pos_B-pos_A)/r_AB**3 + m_C * m_A * G*(pos_C-pos_A)/r_CA**3F_B = m_A * m_B * G*(pos_A-pos_B)/r_AB**3 + m_C * m_B * G*(pos_C-pos_B)/r_BC**3F_C = m_A * m_C * G*(pos_A-pos_C)/r_CA**3 + m_C * m_B * G*(pos_B-pos_C)/r_BC**3return np.hstack((vel_A, vel_B, vel_C, F_A/m_A, F_B/m_B, F_C/m_C))
3.2.3 定义天体的基本参数
#定义天体的初引力常量、质量参数
G = 10.
m_A = 1.
m_B = 1.
m_C = 1.
#此处k为速度的旋转角度(理论上不能取np.pi/6和-5*np.pi/6附近,-np.pi/3是一种平衡位置),v为初始速度大小
k = -np.pi/3
v = np.sqrt(5)
args = (G, m_A, m_B, m_C)
#定义天体的初始速度和位置
pos_A = np.array([0., 0., 0.])
vel_A = np.array([np.cos(k)*v, np.sin(k)*v, 0.])
pos_B = np.array([2., 0., 0.])
vel_B = np.array([np.cos(k+2*np.pi/3)*v, np.sin(k+2*np.pi/3)*v, 0.])
pos_C = np.array([1., np.sqrt(3), 0.])
vel_C = np.array([np.cos(k+4*np.pi/3)*v, np.sin(k+4*np.pi/3)*v, 0.])'''Initial condition y0 must be one-dimensional'''
y0 = np.hstack((pos_A, pos_B, pos_C, vel_A, vel_B, vel_C))t = np.linspace(0, 10, 1000)
3.2.4 选择integrate.ode求解器

我们需要创建一个integrate.ode类的实例,将ODE函数 f f f作为参数传给它。

求解器实例保存在变量r中。在使用它之前,需要使用方法set_initial_value设置初始条件。

还可以使用方法set_integrator来选择求解器,可用的求解器名称为:vode、zvode、lsoda、dopri5和dop853。

r = integrate.ode(f)
r.set_integrator('vode', method = 'adams')
r.set_initial_value(y0, t[0])
r.set_f_params(args)

在这里插入图片描述

3.2.4 求解ODE

配置完求解器之后,可以调用integrate方法来一步一步求解ODE。不同于使用integrate.odeint函数,我们可以追踪已经积分到哪个点。这种方法提供了更好的灵活性。

dt = t[1] - t[0]
y_t = np.zeros((len(t), len(y0)))idx = 0
while r.successful() and r.t < t[-1]+1e-5:y_t[idx, :] = r.yr.integrate(r.t + dt)idx += 1

3.3 matplotlib画图

3.3.1 导入动画库并定义方程

导入matplotlib相关方法,依据前面的数据画轨迹和天体:

%matplotlib widgetimport matplotlib as mpl
from matplotlib import pyplot as plt
from matplotlib import animationfig, ax = plt.subplots()
ax.plot(y_t[:, 0],y_t[:, 1], lw=1.5, color="blue", label=r"A")
ax.plot(y_t[:, 3],y_t[:, 4], lw=1.5, color="red", label=r"B")
ax.plot(y_t[:, 6],y_t[:, 7], lw=1.5, color="green", label=r"C")
ax.set_xlabel("x")
ax.set_ylabel("y")
point1, = ax.plot(y_t[0, 0], y_t[0, 1], 'o')  
point2, = ax.plot(y_t[0, 3], y_t[0, 4], 'o')  
point3, = ax.plot(y_t[0, 6], y_t[0, 7], 'o')  
#显示所画的图  
plt.show()  

效果
在这里插入图片描述

3.3.2 构造动画函数与帧函数:

接着,构造自定义动画函数animate,用来更新每一帧上各个x对应的y坐标值,参数表示第i帧;然后,构造开始帧函数init:

def animate(idx):x1 = np.array(y_t[idx:idx+2, 0])y1 = np.array(y_t[idx:idx+2, 1])x2 = np.array(y_t[idx:idx+2, 3])y2 = np.array(y_t[idx:idx+2, 4])x3 = np.array(y_t[idx:idx+2, 6])y3 = np.array(y_t[idx:idx+2, 7])point1.set_data([x1[0]], [y1[0]])point2.set_data([x2[0]], [y2[0]])point3.set_data([x3[0]], [y3[0]])return point1,point2,point3,
def init():point1.set_data(y_t[0, 0], y_t[0, 1])point2.set_data(y_t[0, 3], y_t[0, 4])point3.set_data(y_t[0, 6], y_t[0, 7])return point1,point2,point3,
3.3.3 参数设置:

接下来,我们调用FuncAnimation函数生成动画。参数说明

  1. fig 进行动画绘制的figure
  2. func 自定义动画函数,即传入刚定义的函数animate
  3. frames 动画长度,一次循环包含的帧数
  4. init_func 自定义开始帧,即传入刚定义的函数init
  5. interval 更新频率,以ms计
  6. lit 选择更新所有点,还是仅更新产生变化的点
fig, ax = plt.subplots()
ax.plot(y_t[:, 0],y_t[:, 1], lw=1.5, color="blue", label=r"A")
ax.plot(y_t[:, 3],y_t[:, 4], lw=1.5, color="red", label=r"B")
ax.plot(y_t[:, 6],y_t[:, 7], lw=1.5, color="green", label=r"C")
ax.set_xlabel("x")
ax.set_ylabel("y")
point1, = ax.plot(y_t[0, 0], y_t[0, 1], 'o')  
point2, = ax.plot(y_t[0, 3], y_t[0, 4], 'o')  
point3, = ax.plot(y_t[0, 6], y_t[0, 7], 'o')  ani = animation.FuncAnimation(fig=fig,func=animate,frames=1000,init_func=init,interval=1,blit=True)
#plt.show()
ani.save('movie.gif', writer='imagemagick', fps=30)

请添加图片描述

3.4 bqplot画图

计算周期T,画图方式采用bqplot

%matplotlib inline
import bqplot as bq
from bqplot import pyplot as pltfigure = plt.figure(title='Bqplot Plot')
figure.layout.height = '600px'
figure.layout.width = '600px'plot_A = plt.plot(y_t[:, 0],y_t[:, 1], 'r')  # A
plot_B = plt.plot(y_t[:, 3],y_t[:, 4], 'b')  # B
plot_C = plt.plot(y_t[:, 6],y_t[:, 7], 'g')  # C
scatter_A = plt.scatter(y_t[:2, 0],y_t[:2, 1], colors=["red"])
scatter_B = plt.scatter(y_t[:2, 3],y_t[:2, 4], colors=["blue"])
scatter_C = plt.scatter(y_t[:2, 6],y_t[:2, 7], colors=["green"])plt.show()

在这里插入图片描述

'''Animation'''
import timeidx = 0
speed = 1#实际周期的speed倍
T1 = time.time()
i = 1
for idx in range(1, len(t)-1, speed):  # Update Chartscatter_A.x = y_t[idx:idx+2, 0]x = np.array(y_t[idx:idx+2, 0])scatter_A.y = y_t[idx:idx+2, 1]y = np.array(y_t[idx:idx+2, 1])if ((abs(x[0])<0.01)& (abs(y[0])<0.01)):T2 = time.time()print(str(i)+'T周期:%s秒'% (T2 - T1))i +=1scatter_B.x = y_t[idx:idx+2, 3]scatter_B.y = y_t[idx:idx+2, 4]scatter_C.x = y_t[idx:idx+2, 6]scatter_C.y = y_t[idx:idx+2, 7]time.sleep(0.01)

在这里插入图片描述

4. 方法2(查表法)

参考论文;https://arxiv.org/pdf/1705.00527v2.pdf

import numpy as np
from scipy import integrate
def f(t, y, args):G, m_A, m_B, m_C = argspos_A, pos_B, pos_C, vel_A, vel_B, vel_C = y[:3], y[3:6], y[6:9], y[9:12], y[12:15], y[15:]r_AB = np.sqrt(np.sum((pos_A-pos_B)**2))r_BC = np.sqrt(np.sum((pos_B-pos_C)**2))r_CA = np.sqrt(np.sum((pos_C-pos_A)**2))F_A = m_A * m_B * G*(pos_B-pos_A)/r_AB**3 + m_C * m_A * G*(pos_C-pos_A)/r_CA**3F_B = m_A * m_B * G*(pos_A-pos_B)/r_AB**3 + m_C * m_B * G*(pos_C-pos_B)/r_BC**3F_C = m_A * m_C * G*(pos_A-pos_C)/r_CA**3 + m_C * m_B * G*(pos_B-pos_C)/r_BC**3return np.hstack((vel_A, vel_B, vel_C, F_A/m_A, F_B/m_B, F_C/m_C))

根据论文选择合适参数,修改天体的基本参数,下面采用I.B-1

G = 1.
m_A = 1.
m_B = 1.
m_C = 1.
x1 = -0.9989071137
x2 = -0.0001484864
v1 =  0.4646402601
v2 =  0.3963456869 
#I.B-1 论文:One hundred and fifty-two new families of Newtonian periodic planar three-body orbits(P8)
args = (G, m_A, m_B, m_C)pos_A = np.array([x1, x2, 0.])
vel_A = np.array([v1, v2, 0.])
pos_B = np.array([-x1, -x2, 0.])
vel_B = np.array([v1, v2, 0.])
pos_C = np.array([0., 0, 0.])
vel_C = np.array([-2*v1, -2*v2, 0.])'''Initial condition y0 must be one-dimensional'''
y0 = np.hstack((pos_A, pos_B, pos_C, vel_A, vel_B, vel_C))t = np.linspace(0, 20, 5000)
r = integrate.ode(f)
r.set_integrator('vode', method = 'adams')
r.set_initial_value(y0, t[0])
r.set_f_params(args)
dt = t[1] - t[0]
y_t = np.zeros((len(t), len(y0)))idx = 0
while r.successful() and r.t < t[-1]+1e-5:y_t[idx, :] = r.yr.integrate(r.t + dt)idx += 1import bqplot as bq
from bqplot import pyplot as pltfigure = plt.figure(title='Bqplot Plot')
figure.layout.height = '600px'
figure.layout.width = '600px'plot_A = plt.plot(y_t[:, 0],y_t[:, 1], 'r')  # A
plot_B = plt.plot(y_t[:, 3],y_t[:, 4], 'b')  # B
plot_C = plt.plot(y_t[:, 6],y_t[:, 7], 'g')  # C
scatter_A = plt.scatter(y_t[:2, 0],y_t[:2, 1], colors=["red"])
scatter_B = plt.scatter(y_t[:2, 3],y_t[:2, 4], colors=["blue"])
scatter_C = plt.scatter(y_t[:2, 6],y_t[:2, 7], colors=["green"])plt.show()
'''Animation'''
import timeidx = 0
speed = 2
T1 = time.time()
i = 0
for idx in range(1, len(t)-1, speed):  # Update Chartscatter_A.x = y_t[idx:idx+2, 0]x = np.array(y_t[idx:idx+2, 0])scatter_A.y = y_t[idx:idx+2, 1]y = np.array(y_t[idx:idx+2, 1])if ((abs(x[0]+1)<0.003)& (abs(y[0])<0.003)):T2 = time.time()print(str(i)+'T周期:%s秒'% (T2 - T1))i +=1scatter_B.x = y_t[idx:idx+2, 3]scatter_B.y = y_t[idx:idx+2, 4]scatter_C.x = y_t[idx:idx+2, 6]scatter_C.y = y_t[idx:idx+2, 7]time.sleep(0.01)

在这里插入图片描述
参考文献来自桑鸿乾老师的课件:科学计算和人工智能

这篇关于【续——Python三体问题】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/316062

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

【Python报错已解决】AttributeError: ‘list‘ object has no attribute ‘text‘

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 文章目录 前言一、问题描述1.1 报错示例1.2 报错分析1.3 解决思路 二、解决方法2.1 方法一:检查属性名2.2 步骤二:访问列表元素的属性 三、其他解决方法四、总结 前言 在Python编程中,属性错误(At