LCT(Link-Cut Tree)详解(蒟蒻自留地)

2023-10-31 08:32
文章标签 详解 link tree cut lct 自留地

本文主要是介绍LCT(Link-Cut Tree)详解(蒟蒻自留地),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 最近自学了LCT,发现网上的资料讲解不是很全面,像我这样的蒟蒻一时半会根本理解不了。我弄了很久总算是理解了LCT,打算总结一下LCT的基本操作,还请诸位神牛来找找茬。

 

如果你还没有接触过LCT,你可以先看一看这里:

(看不懂没关系,先留个大概的印像)http://www.cnblogs.com/BLADEVIL/p/3510997.html

看完之后我们知道,LCT和静态的树链剖分很像。怎么说呢?这两种树形结构都是由若干条长度不等的“重链”和“轻边”构成(名字可以不同,大概就是这个意思),“重链”之间由”轻边”连接。就像这样:


可以想象为一棵树被人为的砍成了一段段。


        LCT和树链剖分不同的是,树链剖分的链是不会变化的,所以可以很方便的用线段树维护。但是,既然是动态树,那么树的结构形态将会发生改变,所以我们要用更加灵活的维护区间的结构来对链进行维护,不难想到Splay可以胜任。如何分离树链也是保证时间效率的关键(链的数量和长度要平衡),树链剖分的“重儿子”就体现了前人博大精深的智慧。


        在这里解释一下为什么要把树砍成一条条的链:我们可以在logn的时间内维护长度为n的区间(链),所以这样可以极大的提高树上操作的时间效率。在树链剖分中,我们把一条条链放到线段树上维护。但是LCT中,由于树的形态变化,所以用能够支持合并、分离、翻转等操作的Splay维护LCT的重链(注意,单独一个节点也算是一条重链)。

        这时我们注意到,LCT中的轻边信息变得无法维护。为什么呢?因为Splay只维护了重链,没有维护重链之间的轻边;而LCT中甚至连根都可以不停的变化,所以也没法用点权表示它父边的边权(父亲在变化)。所以,如果在LCT中要维护边上信息,个人认为最方便的方法应该是把边变成一个新点和两条边。这样可以把边权的信息变成点权维护,同时为了不影响,把真正的树上节点的点权变成0,就可以用维护点的方式维护边。

 

LCT的各种操作:

        LCT中用Splay维护链,这些Splay叫做“辅助树“。辅助树以它上面每个节点的深度为关键字维护,就是辅助树中每个节点左儿子的深度小于当前节点的深度,当前节点的深度小于右儿子的深度。

        可以把LCT认为是一个由Splay组成的森林,就像这样:(三角形代表一棵Splay,对应着LCT上一条链)


 

箭头是什么意思呢?箭头记录着某棵Splay对应的链向上由轻边连着哪个节点,可以想象为箭头指向“Splay 的父亲”。但是,Splay的父亲并不记录有这个儿子,即箭头是单向的。同时,每个节点要记录它是否是它所在的Splay的根。这样,Splay构成的森林就建成了。


这个是我的Splay节点最基本的定义:(如果要维护更多信息就像Splay维护区间那样加上更多标记)

struct node{int fa,ch[2]; //父亲和左右儿子。bool reverse,is_root;   //区间反转标记、是否是所在Splay的根
}T[maxn];


LCT中基本的Splay上操作:

int getson(int x){return x==T[T[x].fa].ch[1];
}
void pushreverse(int x){if(!x)return;swap(T[x].ch[0],T[x].ch[1]);T[x].reverse^=1;
}
void pushdown(int x){if(T[x].reverse){pushreverse(T[x].ch[0]);pushreverse(T[x].ch[1]);T[x].reverse=false;}
}
void rotate(int x){if(T[x].is_root)return;int k=getson(x),fa=T[x].fa;int fafa=T[fa].fa;pushdown(fa);pushdown(x);    //先要下传标记T[fa].ch[k]=T[x].ch[k^1];if(T[x].ch[k^1])T[T[x].ch[k^1]].fa=fa;T[x].ch[k^1]=fa;T[fa].fa=x;T[x].fa=fafa;if(!T[fa].is_root)T[fafa].ch[fa==T[fafa].ch[1]]=x;else T[x].is_root=true,T[fa].is_root=false;//update(fa);update(x);    //如果维护了信息,就要更新节点
}
void push(int x){if(!T[x].is_root)push(T[x].fa);pushdown(x);
}
void Splay(int x){push(x);   //在Splay到根之前,必须先传完反转标记for(int fa;!T[x].is_root;rotate(x)){if(!T[fa=T[x].fa].is_root){rotate((getson(x)==getson(fa))?fa:x);}}
}






access操作:

这是LCT最核心的操作。其他所有操作都要用到它。

他的含义是”访问某节点“。作用是:对于访问的节点x,打通一条从树根(真实的LCT树)到x的重链;如果x往下是重链,那么把x往下的重边改成轻边。可以理解为专门开辟一条x到根的路径,由一棵Splay维护这条路径。

access之前:(粗的是重链)        access之后:

 

access实现的方式很简单;

        先把x旋转到所在Splay的根,然后把x的右孩子的is_root设为true(此时右孩子对应的是x下方的重链,这样就断开了x和下方的重链)。

        用y记录上一次的x(初始化y=0),把y接到x的右孩子上,这样就把上一次的重链接到了当前重链一起,同时记得T[y].is_root=false。

        记录y=x,然后x=T[x].fa,把x上提。重复上面的步骤直到x=0。

代码:

void access(int x){int y=0;do{Splay(x);T[T[x].ch[1]].is_root=true;T[T[x].ch[1]=y].is_root=false;//update(x);    //如果维护了信息记得更新。x=T[y=x].fa;}while(x);
}




mroot操作:

         这个操作的作用是把某个节点变成树根(这里的根指的是整棵LCT的根)。加上access操作,就可以方便的提取出LCT上两点之间的路径。提取u到v的路径只需要mroot(u),access(v),然后v所在的Splay对应的链就是u到v的路径。

mroot实现的方式:

         由于LCT是Splay组成的森林,所以要把x变成根就只需要让所有Splay的父亲最终指向x所在Splay。所以先access(x),Splay(x),把现在的根和将成为根的x链在一棵Splay中,并转到根即可。但是我们注意到,由于x成为了新的根,所以它和原来的根所在的Splay中深度作为关键字的性质遭到了破坏:新根x应该是Splay中深度最小的,但是之前的操作并不会改变x的深度(也就是目前x依旧是当前Splay中深度最深的)。所以,我们需要把所在的这棵Splay翻转过来。

(粗的是重链,y是原来的根)

翻转前:                                                                      翻转后:

 

这时候x才真正变成了根。

代码:

void mroot(int x){access(x);Splay(x);pushreverse(x);
}




link操作:

这个操作的作用是连接两棵LCT。对于link(u,v),表示连接u所在的LCT和v所在的LCT;

link实现的方式:

很简单,只需要先mroot(u),然后记录T[u].fa=v就可以了,就是把一个Splay森林连到另一个上。

代码:

void link(int u,int v){mroot(u);T[u].fa=v;
}




cut操作:

         这个操作的作用是分离出两棵LCT。

代码:

void cut(int u,int v)mroot(u);   //先把u变成根access(v);Splay(v);    //连接u、vpushdown(v);     //先下传标记T[u].fa=T[v].ch[0]=0;//v的左孩子表示v上方相连的重链//update(v);  //记得维护信息
}




这些就是LCT的基本操作。我推荐几个LCT的练习题:


bzoj2049 SDOI2008洞穴勘探

模板题,只需要linkcut,然后询问连通性。题解:

http://blog.csdn.net/saramanda/article/details/55210235


bzoj2002 HNOI2010弹飞绵羊

模板题,需要link和询问某点到根的路径长度。题解:

http://blog.csdn.net/saramanda/article/details/55210418


bzoj3669 NOI2014魔法森林

LCT的综合应用。题解:

http://blog.csdn.net/saramanda/article/details/55250852

这篇关于LCT(Link-Cut Tree)详解(蒟蒻自留地)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/314089

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Java访问修饰符public、private、protected及默认访问权限详解

《Java访问修饰符public、private、protected及默认访问权限详解》:本文主要介绍Java访问修饰符public、private、protected及默认访问权限的相关资料,每... 目录前言1. public 访问修饰符特点:示例:适用场景:2. private 访问修饰符特点:示例:

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

详解Java如何向http/https接口发出请求

《详解Java如何向http/https接口发出请求》这篇文章主要为大家详细介绍了Java如何实现向http/https接口发出请求,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用Java发送web请求所用到的包都在java.net下,在具体使用时可以用如下代码,你可以把它封装成一

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

mac中资源库在哪? macOS资源库文件夹详解

《mac中资源库在哪?macOS资源库文件夹详解》经常使用Mac电脑的用户会发现,找不到Mac电脑的资源库,我们怎么打开资源库并使用呢?下面我们就来看看macOS资源库文件夹详解... 在 MACOS 系统中,「资源库」文件夹是用来存放操作系统和 App 设置的核心位置。虽然平时我们很少直接跟它打交道,但了

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

Rust 数据类型详解

《Rust数据类型详解》本文介绍了Rust编程语言中的标量类型和复合类型,标量类型包括整数、浮点数、布尔和字符,而复合类型则包括元组和数组,标量类型用于表示单个值,具有不同的表示和范围,本文介绍的非... 目录一、标量类型(Scalar Types)1. 整数类型(Integer Types)1.1 整数字

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1