LCT(Link-Cut Tree)详解(蒟蒻自留地)

2023-10-31 08:32
文章标签 详解 link tree cut lct 自留地

本文主要是介绍LCT(Link-Cut Tree)详解(蒟蒻自留地),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 最近自学了LCT,发现网上的资料讲解不是很全面,像我这样的蒟蒻一时半会根本理解不了。我弄了很久总算是理解了LCT,打算总结一下LCT的基本操作,还请诸位神牛来找找茬。

 

如果你还没有接触过LCT,你可以先看一看这里:

(看不懂没关系,先留个大概的印像)http://www.cnblogs.com/BLADEVIL/p/3510997.html

看完之后我们知道,LCT和静态的树链剖分很像。怎么说呢?这两种树形结构都是由若干条长度不等的“重链”和“轻边”构成(名字可以不同,大概就是这个意思),“重链”之间由”轻边”连接。就像这样:


可以想象为一棵树被人为的砍成了一段段。


        LCT和树链剖分不同的是,树链剖分的链是不会变化的,所以可以很方便的用线段树维护。但是,既然是动态树,那么树的结构形态将会发生改变,所以我们要用更加灵活的维护区间的结构来对链进行维护,不难想到Splay可以胜任。如何分离树链也是保证时间效率的关键(链的数量和长度要平衡),树链剖分的“重儿子”就体现了前人博大精深的智慧。


        在这里解释一下为什么要把树砍成一条条的链:我们可以在logn的时间内维护长度为n的区间(链),所以这样可以极大的提高树上操作的时间效率。在树链剖分中,我们把一条条链放到线段树上维护。但是LCT中,由于树的形态变化,所以用能够支持合并、分离、翻转等操作的Splay维护LCT的重链(注意,单独一个节点也算是一条重链)。

        这时我们注意到,LCT中的轻边信息变得无法维护。为什么呢?因为Splay只维护了重链,没有维护重链之间的轻边;而LCT中甚至连根都可以不停的变化,所以也没法用点权表示它父边的边权(父亲在变化)。所以,如果在LCT中要维护边上信息,个人认为最方便的方法应该是把边变成一个新点和两条边。这样可以把边权的信息变成点权维护,同时为了不影响,把真正的树上节点的点权变成0,就可以用维护点的方式维护边。

 

LCT的各种操作:

        LCT中用Splay维护链,这些Splay叫做“辅助树“。辅助树以它上面每个节点的深度为关键字维护,就是辅助树中每个节点左儿子的深度小于当前节点的深度,当前节点的深度小于右儿子的深度。

        可以把LCT认为是一个由Splay组成的森林,就像这样:(三角形代表一棵Splay,对应着LCT上一条链)


 

箭头是什么意思呢?箭头记录着某棵Splay对应的链向上由轻边连着哪个节点,可以想象为箭头指向“Splay 的父亲”。但是,Splay的父亲并不记录有这个儿子,即箭头是单向的。同时,每个节点要记录它是否是它所在的Splay的根。这样,Splay构成的森林就建成了。


这个是我的Splay节点最基本的定义:(如果要维护更多信息就像Splay维护区间那样加上更多标记)

struct node{int fa,ch[2]; //父亲和左右儿子。bool reverse,is_root;   //区间反转标记、是否是所在Splay的根
}T[maxn];


LCT中基本的Splay上操作:

int getson(int x){return x==T[T[x].fa].ch[1];
}
void pushreverse(int x){if(!x)return;swap(T[x].ch[0],T[x].ch[1]);T[x].reverse^=1;
}
void pushdown(int x){if(T[x].reverse){pushreverse(T[x].ch[0]);pushreverse(T[x].ch[1]);T[x].reverse=false;}
}
void rotate(int x){if(T[x].is_root)return;int k=getson(x),fa=T[x].fa;int fafa=T[fa].fa;pushdown(fa);pushdown(x);    //先要下传标记T[fa].ch[k]=T[x].ch[k^1];if(T[x].ch[k^1])T[T[x].ch[k^1]].fa=fa;T[x].ch[k^1]=fa;T[fa].fa=x;T[x].fa=fafa;if(!T[fa].is_root)T[fafa].ch[fa==T[fafa].ch[1]]=x;else T[x].is_root=true,T[fa].is_root=false;//update(fa);update(x);    //如果维护了信息,就要更新节点
}
void push(int x){if(!T[x].is_root)push(T[x].fa);pushdown(x);
}
void Splay(int x){push(x);   //在Splay到根之前,必须先传完反转标记for(int fa;!T[x].is_root;rotate(x)){if(!T[fa=T[x].fa].is_root){rotate((getson(x)==getson(fa))?fa:x);}}
}






access操作:

这是LCT最核心的操作。其他所有操作都要用到它。

他的含义是”访问某节点“。作用是:对于访问的节点x,打通一条从树根(真实的LCT树)到x的重链;如果x往下是重链,那么把x往下的重边改成轻边。可以理解为专门开辟一条x到根的路径,由一棵Splay维护这条路径。

access之前:(粗的是重链)        access之后:

 

access实现的方式很简单;

        先把x旋转到所在Splay的根,然后把x的右孩子的is_root设为true(此时右孩子对应的是x下方的重链,这样就断开了x和下方的重链)。

        用y记录上一次的x(初始化y=0),把y接到x的右孩子上,这样就把上一次的重链接到了当前重链一起,同时记得T[y].is_root=false。

        记录y=x,然后x=T[x].fa,把x上提。重复上面的步骤直到x=0。

代码:

void access(int x){int y=0;do{Splay(x);T[T[x].ch[1]].is_root=true;T[T[x].ch[1]=y].is_root=false;//update(x);    //如果维护了信息记得更新。x=T[y=x].fa;}while(x);
}




mroot操作:

         这个操作的作用是把某个节点变成树根(这里的根指的是整棵LCT的根)。加上access操作,就可以方便的提取出LCT上两点之间的路径。提取u到v的路径只需要mroot(u),access(v),然后v所在的Splay对应的链就是u到v的路径。

mroot实现的方式:

         由于LCT是Splay组成的森林,所以要把x变成根就只需要让所有Splay的父亲最终指向x所在Splay。所以先access(x),Splay(x),把现在的根和将成为根的x链在一棵Splay中,并转到根即可。但是我们注意到,由于x成为了新的根,所以它和原来的根所在的Splay中深度作为关键字的性质遭到了破坏:新根x应该是Splay中深度最小的,但是之前的操作并不会改变x的深度(也就是目前x依旧是当前Splay中深度最深的)。所以,我们需要把所在的这棵Splay翻转过来。

(粗的是重链,y是原来的根)

翻转前:                                                                      翻转后:

 

这时候x才真正变成了根。

代码:

void mroot(int x){access(x);Splay(x);pushreverse(x);
}




link操作:

这个操作的作用是连接两棵LCT。对于link(u,v),表示连接u所在的LCT和v所在的LCT;

link实现的方式:

很简单,只需要先mroot(u),然后记录T[u].fa=v就可以了,就是把一个Splay森林连到另一个上。

代码:

void link(int u,int v){mroot(u);T[u].fa=v;
}




cut操作:

         这个操作的作用是分离出两棵LCT。

代码:

void cut(int u,int v)mroot(u);   //先把u变成根access(v);Splay(v);    //连接u、vpushdown(v);     //先下传标记T[u].fa=T[v].ch[0]=0;//v的左孩子表示v上方相连的重链//update(v);  //记得维护信息
}




这些就是LCT的基本操作。我推荐几个LCT的练习题:


bzoj2049 SDOI2008洞穴勘探

模板题,只需要linkcut,然后询问连通性。题解:

http://blog.csdn.net/saramanda/article/details/55210235


bzoj2002 HNOI2010弹飞绵羊

模板题,需要link和询问某点到根的路径长度。题解:

http://blog.csdn.net/saramanda/article/details/55210418


bzoj3669 NOI2014魔法森林

LCT的综合应用。题解:

http://blog.csdn.net/saramanda/article/details/55250852

这篇关于LCT(Link-Cut Tree)详解(蒟蒻自留地)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/314089

相关文章

Flutter监听当前页面可见与隐藏状态的代码详解

《Flutter监听当前页面可见与隐藏状态的代码详解》文章介绍了如何在Flutter中使用路由观察者来监听应用进入前台或后台状态以及页面的显示和隐藏,并通过代码示例讲解的非常详细,需要的朋友可以参考下... flutter 可以监听 app 进入前台还是后台状态,也可以监听当http://www.cppcn

C++ Primer 标准库vector示例详解

《C++Primer标准库vector示例详解》该文章主要介绍了C++标准库中的vector类型,包括其定义、初始化、成员函数以及常见操作,文章详细解释了如何使用vector来存储和操作对象集合,... 目录3.3标准库Vector定义和初始化vector对象通列表初始化vector对象创建指定数量的元素值

MyBatis与其使用方法示例详解

《MyBatis与其使用方法示例详解》MyBatis是一个支持自定义SQL的持久层框架,通过XML文件实现SQL配置和数据映射,简化了JDBC代码的编写,本文给大家介绍MyBatis与其使用方法讲解,... 目录ORM缺优分析MyBATisMyBatis的工作流程MyBatis的基本使用环境准备MyBati

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

spring @EventListener 事件与监听的示例详解

《spring@EventListener事件与监听的示例详解》本文介绍了自定义Spring事件和监听器的方法,包括如何发布事件、监听事件以及如何处理异步事件,通过示例代码和日志,展示了事件的顺序... 目录1、自定义Application Event2、自定义监听3、测试4、源代码5、其他5.1 顺序执行

Java之并行流(Parallel Stream)使用详解

《Java之并行流(ParallelStream)使用详解》Java并行流(ParallelStream)通过多线程并行处理集合数据,利用Fork/Join框架加速计算,适用于大规模数据集和计算密集... 目录Java并行流(Parallel Stream)1. 核心概念与原理2. 创建并行流的方式3. 适

web网络安全之跨站脚本攻击(XSS)详解

《web网络安全之跨站脚本攻击(XSS)详解》:本文主要介绍web网络安全之跨站脚本攻击(XSS)的相关资料,跨站脚本攻击XSS是一种常见的Web安全漏洞,攻击者通过注入恶意脚本诱使用户执行,可能... 目录前言XSS 的类型1. 存储型 XSS(Stored XSS)示例:危害:2. 反射型 XSS(Re

linux本机进程间通信之UDS详解

《linux本机进程间通信之UDS详解》文章介绍了Unix域套接字(UDS)的使用方法,这是一种在同一台主机上不同进程间通信的方式,UDS支持三种套接字类型:SOCK_STREAM、SOCK_DGRA... 目录基础概念本机进程间通信socket实现AF_INET数据收发示意图AF_Unix数据收发流程图A

Go 1.23中Timer无buffer的实现方式详解

《Go1.23中Timer无buffer的实现方式详解》在Go1.23中,Timer的实现通常是通过time包提供的time.Timer类型来实现的,本文主要介绍了Go1.23中Timer无buff... 目录Timer 的基本实现无缓冲区的实现自定义无缓冲 Timer 实现更复杂的 Timer 实现总结在

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计