大数据(4c)Kafka理论知识

2023-10-31 05:59
文章标签 数据 kafka 理论知识 4c

本文主要是介绍大数据(4c)Kafka理论知识,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

高吞吐的目录

  • 1、基础理论
    • 1.1、什么是消息队列
    • 1.2、消息队列的两种模式
    • 1.3、高可用原理
  • 2、Kafka概述
  • 3、主题和分区
  • 4、数据存储原理
  • 5、Kafka读写如何高效?
  • 6、生产数据的可靠性
    • 6.1、应答机制
    • 6.2、领导候选
    • 6.3、数据一致性
    • 6.4、容错机制
  • 附录

1、基础理论

1.1、什么是消息队列

  • Message Queue
  • 消息的传输过程中保存消息的容器
  • 应用场景:程序解耦、异步消息、流量削锋…

1.2、消息队列的两种模式

点对点模式(消费者主动拉取数据,拉取成功后删除队列上的数据)

一个消息 只能有一个消费者可以消费

发布/订阅模式(消费者消费数据之后,队列上的数据不会被马上清除)

1.3、高可用原理

  • High Availability
  • 目标:减少停工时间
  • 策略:消除单点故障

工作模式

2、Kafka概述

  • 基于发布/订阅模式分布式消息队列
  • 主用场景:大数据实时处理、流量削峰

架构图

英文名译名说明
Producer生产者生产消息
Consumer消费者消费消息
Consumer Group消费者组由多个Consumer组成
是逻辑上的一个订阅者
Broker经纪人一台Kafka服务器就是一个Broker
一个集群由多个Broker组成
一个Broker可以容纳多个topic的partition
Topic主题可以理解为一个存放消息的逻辑上的队列
一个topic可以分布到多个Broker
Partition分区一个topic可以分存多个partition
每个partition是一个有序的队列
Replica复制品数据副本
Leader首领对接生产者和消费者
Follower追随者实时同步leader的数据
leader故障时,某follower会成为新的leader

3、主题和分区

  • 主题是逻辑上的概念
  • 分区是物理上的概念,以文件夹的方式

一个主题下可以有多个分区;分区有序,主题不一定有序

消费者组是逻辑上的一个订阅者,由多个消费者组成

各个分区可以被消费者并行消费

多个消费者组可以订阅同一个主题
1个消费者可以消费多个分区
对于1个消费者组,1个分区 只能被 该消费者组内的1个消费者 消费

建议 某主题的分区数=订阅该主题的消费者组的消费者数

一台服务器有Broker,一个集群由多个Broker组成

一个Topic可以分布到多个Broker

4、数据存储原理

Kafka将 生产者发送的消息 暂存到硬盘

下面使用命令查看具体的文件夹和文件

1、把segment改小,使得容易产生大量segment

vi $KAFKA_HOME/config/server.properties
log.segment.bytes=102400

2、创建分区,两个副本,三个分区

kafka-topics.sh \
--zookeeper hadoop100:2181/kafka \
--create \
--replication-factor 2 \
--partitions 3 \
--topic topicA

3、生产数据(Kafka内置的生产者,可用于压测)

kafka-producer-perf-test.sh --topic topicA \
--num-records 4000 --record-size 1024 \
--producer-props bootstrap.servers=hadoop100:9092 --throughput -1
参数说明
--num-records写多少个数据
--record-size每个数据多大(单位:byte)
--producer-props指定数据写到哪个集群
--throughput写数据速率限制,-1表示不限

4、查看数据目录下名为topicA的主题

ls $KAFKA_HOME/logs | grep topicA
ssh hadoop101 'ls $KAFKA_HOME/logs | grep topicA'
ssh hadoop102 'ls $KAFKA_HOME/logs | grep topicA'

5、查看分区(文件夹)内的文件

ll topicA-1

6、查看索引文件以及偏移量(offset)

kafka-dump-log.sh --print-data-log --files 00000000000000000000.index

7、数据查找

5、Kafka读写如何高效?

  • 多分区并行
  • 顺序写磁盘
    顺序写 速度 远大于 随机写
  • 使用了page cache(译名:页高速缓冲存储器)
    在Linux读写文件时,page cache用于缓存文件的逻辑内容,从而加快对磁盘上映像和数据的访问
  • 零复制技术

6、生产数据的可靠性

6.1、应答机制

  • ACK
  • 全称:acknowledgement character
  • 译名:命令正确应答
  • 应答等级
    ack=0:Leader接收数据后 应答
    ack=1:Leader接收数据并写入后 应答
    ack=-1:Leader接收和写入数据,Follower同步数据 后应答

6.2、领导候选

  • ISR
  • 全称:in-sync replica set
  • leader同步到一定程度的follower
  • 长期没同步的follower将被踢出ISR
  • leader挂掉后就从ISR中选举新leader
kafka-topics.sh --describe --topic topicA --bootstrap-server hadoop100:9092

查看主题信息,如:分区数、领导者、追随者、Isr……

6.3、数据一致性

只能保证副本之间的数据一致性,并不能保证数据不丢失或不重复

  • LEO
    log end offset
    当前日志数据(副本)最后一个偏移量

  • HW
    high watermark
    所有副本的LEO中 最小的那一个

6.4、容错机制

容错等级语义说明
at most once数据最多一条数据可能会丢,但不会重复
at least one数据至少一条数据绝不会丢,但可能重复
exactly once数据有且只有一条数据不会丢,也不会重复

如何实现【exactly once】
1、ack=-1,实现数据不会丢
2、开启幂等性
3、给消息添加唯一标识【生产者ID、分区号、该分区的数据的偏移量】,据此防止数据重复
4、生产者不要挂(生产者挂掉重启后,生产者编号可能变)或 固定生产者编号

附录

en🔉cn
brokerˈbroʊkərn. 经纪人
acknowledgementəkˈnɑːlɪdʒməntn. 承认;确认;感谢
replicaˈreplɪkən. 复制品,仿制品;摹本
bootstrapˈbuːtstræpn. (靴筒后的)靴襻;[计] 引导程序;vt. 启动(电脑)
watermarkˈwɔːtərmɑːrkn. 水印;vt. 印水印;(water mark 两单词合体)
exactlyɪɡˈzæktliadv. 恰好地;精确地;正确地

这篇关于大数据(4c)Kafka理论知识的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/313305

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.